The Journal of biological chemistry, 2016
Authors
Banuelos, Carmen A, Tavakoli, Iran, Tien, Amy H, Caley, Daniel P, Mawji, Nasrin R, Li, Zhenzhen, Wang, Jun, Yang, Yu Chi, Imamura, Yusuke, Yan, Luping, Wen, Jian Guo, Andersen, Raymond J, Sadar, Marianne D
Publication Abstract
Androgen receptor (AR) is a validated drug target for all stages of prostate cancer including metastatic castration-resistant prostate cancer (CRPC). All current hormone therapies for CRPC target the C-terminal ligand-binding domain of AR and ultimately all fail with resumed AR transcriptional activity. Within the AR N-terminal domain (NTD) is activation function-1 (AF-1) that is essential for AR transcriptional activity. Inhibitors of AR AF-1 would potentially block most AR mechanisms of resistance including constitutively active AR splice variants that lack the ligand-binding domain. Here we provide evidence that sintokamide A (SINT1) binds AR AF-1 region to specifically inhibit transactivation of AR NTD. Consistent with SINT1 targeting AR AF-1, it attenuated transcriptional activities of both full-length AR and constitutively active AR splice variants, which correlated with inhibition of growth of enzalutamide-resistant prostate cancer cells expressing AR splice variants. In vivo, SINT1 caused regression of CRPC xenografts and reduced expression of prostate-specific antigen, a gene transcriptionally regulated by AR. Inhibition of AR activity by SINT1 was additive to EPI-002, a known AR AF-1 inhibitor that is in clinical trials (NCT02606123). This implies that SINT1 binds to a site on AF-1 that is unique from EPI. Consistent with this suggestion, these two compounds showed differences in blocking AR interaction with STAT3. This work provides evidence that the intrinsically disordered NTD of AR is druggable and that SINT1 analogs may provide a novel scaffold for drug development for the treatment of prostate cancer or other diseases of the AR axis.

Oncotarget, 2016
Authors
Bortnik, Svetlana, Choutka, Courtney, Horlings, Hugo M, Leung, Samuel, Baker, Jennifer H, Lebovitz, Chandra, Dragowska, Wieslawa H, Go, Nancy E, Bally, Marcel B, Minchinton, Andrew I, Gelmon, Karen A, Gorski, Sharon M
Publication Abstract
Autophagy, a lysosome-mediated degradation and recycling process, functions in advanced malignancies to promote cancer cell survival and contribute to cancer progression and drug resistance. While various autophagy inhibition strategies are under investigation for cancer treatment, corresponding patient selection criteria for these autophagy inhibitors need to be developed. Due to its central roles in the autophagy process, the cysteine protease ATG4B is one of the autophagy proteins being pursued as a potential therapeutic target. In this study, we investigated the expression of ATG4B in breast cancer, a heterogeneous disease comprised of several molecular subtypes. We examined a panel of breast cancer cell lines, xenograft tumors, and breast cancer patient specimens for the protein expression of ATG4B, and found a positive association between HER2 and ATG4B protein expression. We showed that HER2-positive cells, but not HER2-negative breast cancer cells, require ATG4B to survive under stress. In HER2-positive cells, cytoprotective autophagy was dependent on ATG4B under both starvation and HER2 inhibition conditions. Combined knockdown of ATG4B and HER2 by siRNA resulted in a significant decrease in cell viability, and the combination of ATG4B knockdown with trastuzumab resulted in a greater reduction in cell viability compared to trastuzumab treatment alone, in both trastuzumab-sensitive and -resistant HER2 overexpressing breast cancer cells. Together these results demonstrate a novel association of ATG4B positive expression with HER2 positive breast cancers and indicate that this subtype is suitable for emerging ATG4B inhibition strategies.

International journal of urology : official journal of the Japanese Urological Association, 2016
Authors
Imamura, Yusuke, Sadar, Marianne D
Publication Abstract
The androgen receptor is a transcription factor and validated therapeutic target for prostate cancer. Androgen deprivation therapy remains the gold standard treatment, but it is not curative, and eventually the disease will return as lethal castration-resistant prostate cancer. There have been improvements in the therapeutic landscape with new agents approved, such as abiraterone acetate, enzalutamide, sipuleucel-T, cabazitaxel and Ra-223, in the past 5 years. New insight into the mechanisms of resistance to treatments in advanced disease is being and has been elucidated. All current androgen receptor-targeting therapies inhibit the growth of prostate cancer by blocking the ligand-binding domain, where androgen binds to activate the receptor. Persuasive evidence supports the concept that constitutively active androgen receptor splice variants lacking the ligand-binding domain are one of the resistant mechanisms underlying advanced disease. Transcriptional activity of the androgen receptor requires a functional AF-1 region in its N-terminal domain. Preclinical evidence proved that this domain is a druggable target to forecast a potential paradigm shift in the management of advanced prostate cancer. This review presents an overview of androgen receptor-related mechanisms of resistance as well as novel therapeutic agents to overcome resistance that is linked to the expression of androgen receptor splice variants in castration-resistant prostate cancer.

JCI insight, 2016
Authors
Imamura, Yusuke, Tien, Amy H, Pan, Jinhe, Leung, Jacky K, Banuelos, Carmen A, Jian, Kunzhong, Wang, Jun, Mawji, Nasrin R, Fernandez, Javier Garcia, Lin, Kuo-Shyan, Andersen, Raymond J, Sadar, Marianne D
Publication Abstract
Constitutively active splice variants of androgen receptor (AR-Vs) lacking ligand-binding domain (LBD) are a mechanism of resistance to androgen receptor LBD-targeted (AR LBD-targeted) therapies for metastatic castration-resistant prostate cancer (CRPC). There is a strong unmet clinical need to identify prostate cancer patients with AR-V-positive lesions to determine whether they will benefit from further AR LBD-targeting therapies or should receive taxanes or investigational drugs like EPI-506 or galeterone. Both EPI-506 (NCT02606123) and galeterone (NCT02438007) are in clinical trials and are proposed to have efficacy against lesions that are positive for AR-Vs. AR activation function-1 (AF-1) is common to the N-terminal domains of full-length AR and AR-Vs. Here, we provide proof of concept for developing imaging compounds that directly bind AR AF-1 to detect both AR-Vs and full-length AR. {{sup}}123{{/sup}}I-EPI-002 had specific binding to AR AF-1, which enabled direct visualization of CRPC xenografts that express full-length AR and AR-Vs. Our findings highlight the potential of {{sup}}123{{/sup}}I-EPI-002 as an imaging agent for the detection of full-length AR and AR-Vs in CRPC.

Cancer cell, 2016
Authors
Chun, Hye-Jung E, Lim, Emilia L, Heravi-Moussavi, Alireza, Saberi, Saeed, Mungall, Karen L, Bilenky, Mikhail, Carles, Annaick, Tse, Kane, Shlafman, Inna, Zhu, Kelsey, Qian, Jenny Q, Palmquist, Diana L, He, An, Long, William, Goya, Rodrigo, Ng, Michelle, LeBlanc, Veronique G, Pleasance, Erin, Thiessen, Nina, Wong, Tina, Chuah, Eric, Zhao, Yong-Jun, Schein, Jacquie E, Gerhard, Daniela S, Taylor, Michael D, Mungall, Andrew J, Moore, Richard A, Ma, Yussanne, Jones, Steven J M, Perlman, Elizabeth J, Hirst, Martin, Marra, Marco A
Publication Abstract
Malignant rhabdoid tumors (MRTs) are rare lethal tumors of childhood that most commonly occur in the kidney and brain. MRTs are driven by SMARCB1 loss, but the molecular consequences of SMARCB1 loss in extra-cranial tumors have not been comprehensively described and genomic resources for analyses of extra-cranial MRT are limited. To provide such data, we used whole-genome sequencing, whole-genome bisulfite sequencing, whole transcriptome (RNA-seq) and microRNA sequencing (miRNA-seq), and histone modification profiling to characterize extra-cranial MRTs. Our analyses revealed gene expression and methylation subgroups and focused on dysregulated pathways, including those involved in neural crest development.

Canadian journal of surgery. Journal canadien de chirurgie, 2015
Authors
Caron, Nadine, Iglesias, Stuart, Friesen, Randall, Berjat, Vanessa, Humber, Nancy, Falk, Ryan, Prins, Mark, Vogt Haines, Victoria, Geller, Brian, Janke, Fred, Woollard, Robert, Batchelor, Bret, Van Bussel, Jared
Publication Abstract
Rural western Canada relies heavily on family physicians with enhanced surgical skills (ESS) for surgical services. The recent decision by the College of Family Physicians of Canada (CFPC) to recognize ESS as a "community of practice" section offers a potential home akin to family practice anesthesia and emergency medicine. To our knowledge, however, a skill set for ESS in Canada has never been described formally. In this paper the Curriculum Committee of the National ESS Working Group proposes a generic curriculum for the training and evaluation of the ESS skill set.

Nature, 2015
Authors
Eirew, Peter, Steif, Adi, Khattra, Jaswinder, Ha, Gavin, Yap, Damian, Farahani, Hossein, Gelmon, Karen, Chia, Stephen, Mar, Colin, Wan, Adrian, Laks, Emma, Biele, Justina, Shumansky, Karey, Rosner, Jamie, McPherson, Andrew, Nielsen, Cydney, Roth, Andrew J L, Lefebvre, Calvin, Bashashati, Ali, de Souza, Camila, Siu, Celia, Aniba, Radhouane, Brimhall, Jazmine, Oloumi, Arusha, Osako, Tomo, Bruna, Alejandra, Sandoval, Jose L, Algara, Teresa, Greenwood, Wendy, Leung, Kaston, Cheng, Hongwei, Xue, Hui, Wang, Yuzhuo, Lin, Dong, Mungall, Andrew J, Moore, Richard, Zhao, Yongjun, Lorette, Julie, Nguyen, Long, Huntsman, David, Eaves, Connie J, Hansen, Carl, Marra, Marco A, Caldas, Carlos, Shah, Sohrab P, Aparicio, Samuel
Publication Abstract
Human cancers, including breast cancers, comprise clones differing in mutation content. Clones evolve dynamically in space and time following principles of Darwinian evolution, underpinning important emergent features such as drug resistance and metastasis. Human breast cancer xenoengraftment is used as a means of capturing and studying tumour biology, and breast tumour xenografts are generally assumed to be reasonable models of the originating tumours. However, the consequences and reproducibility of engraftment and propagation on the genomic clonal architecture of tumours have not been systematically examined at single-cell resolution. Here we show, using deep-genome and single-cell sequencing methods, the clonal dynamics of initial engraftment and subsequent serial propagation of primary and metastatic human breast cancers in immunodeficient mice. In all 15 cases examined, clonal selection on engraftment was observed in both primary and metastatic breast tumours, varying in degree from extreme selective engraftment of minor (<5% of starting population) clones to moderate, polyclonal engraftment. Furthermore, ongoing clonal dynamics during serial passaging is a feature of tumours experiencing modest initial selection. Through single-cell sequencing, we show that major mutation clusters estimated from tumour population sequencing relate predictably to the most abundant clonal genotypes, even in clonally complex and rapidly evolving cases. Finally, we show that similar clonal expansion patterns can emerge in independent grafts of the same starting tumour population, indicating that genomic aberrations can be reproducible determinants of evolutionary trajectories. Our results show that measurement of genomically defined clonal population dynamics will be highly informative for functional studies using patient-derived breast cancer xenoengraftment.

Autophagy, 2015
Authors
Lebovitz, Chandra B, Robertson, A Gordon, Goya, Rodrigo, Jones, Steven J, Morin, Ryan D, Marra, Marco A, Gorski, Sharon M
Publication Abstract
Aberrant activation or disruption of autophagy promotes tumorigenesis in various preclinical models of cancer, but whether the autophagy pathway is a target for recurrent molecular alteration in human cancer patient samples is unknown. To address this outstanding question, we surveyed 211 human autophagy-associated genes for tumor-related alterations to DNA sequence and RNA expression levels and examined their association with patient survival outcomes in multiple cancer types with sequence data from The Cancer Genome Atlas consortium. We found 3 (RB1CC1/FIP200, ULK4, WDR45/WIPI4) and one (ATG7) core autophagy genes to be under positive selection for somatic mutations in endometrial carcinoma and clear cell renal carcinoma, respectively, while 29 autophagy regulators and pathway interactors, including previously identified KEAP1, NFE2L2, and MTOR, were significantly mutated in 6 of the 11 cancer types examined. Gene expression analyses revealed that GABARAPL1 and MAP1LC3C/LC3C transcripts were less abundant in breast cancer and non-small cell lung cancers than in matched normal tissue controls; ATG4D transcripts were increased in lung squamous cell carcinoma, as were ATG16L2 transcripts in kidney cancer. Unsupervised clustering of autophagy-associated mRNA levels in tumors stratified patient overall survival in 3 of 9 cancer types (acute myeloid leukemia, clear cell renal carcinoma, and head and neck cancer). These analyses provide the first comprehensive resource of recurrently altered autophagy-associated genes in human tumors, and highlight cancer types and subtypes where perturbed autophagy may be relevant to patient overall survival.

The Journal of cell biology, 2014
Authors
DeVorkin, Lindsay, Go, Nancy Erro, Hou, Ying-Chen Claire, Moradian, Annie, Morin, Gregg B, Gorski, Sharon M
Publication Abstract
Increasing evidence reveals that a subset of proteins participates in both the autophagy and apoptosis pathways, and this intersection is important in normal physiological contexts and in pathological settings. In this paper, we show that the Drosophila effector caspase, Drosophila caspase 1 (Dcp-1), localizes within mitochondria and regulates mitochondrial morphology and autophagic flux. Loss of Dcp-1 led to mitochondrial elongation, increased levels of the mitochondrial adenine nucleotide translocase stress-sensitive B (SesB), increased adenosine triphosphate (ATP), and a reduction in autophagic flux. Moreover, we find that SesB suppresses autophagic flux during midoogenesis, identifying a novel negative regulator of autophagy. Reduced SesB activity or depletion of ATP by oligomycin A could rescue the autophagic defect in Dcp-1 loss-of-function flies, demonstrating that Dcp-1 promotes autophagy by negatively regulating SesB and ATP levels. Furthermore, we find that pro-Dcp-1 interacts with SesB in a nonproteolytic manner to regulate its stability. These data reveal a new mitochondrial-associated molecular link between nonapoptotic caspase function and autophagy regulation in vivo.

International journal of cancer, 2013
Authors
Wong, John C T, Hasan, Mohammad R, Rahman, Mahbuba, Yu, Angel C, Chan, Simon K, Schaeffer, David F, Kennecke, Hagen F, Lim, Howard J, Owen, David, Tai, Isabella T
Publication Abstract
Dysregulation of nucleophosmin 1 (NPM1) has been found in numerous solid and hematological malignancies. Our previous meta-analysis of colorectal cancer (CRC) high throughput gene expression profiling studies identified it as a consistently reported up-regulated gene in the malignant state. Our aims were to compare NPM1 expression in normal colon, adenoma and CRC, to correlate their expressions with clinico-pathological parameters, and to assess the biological role of aberrant NPM1 expression in CRC cells. NPM1 transcript levels were studied in human CRC cell lines, whereas a tissue microarray of 57 normal human colon, 40 adenoma and 185 CRC samples were used to analyze NPM1 protein expression by immunohistochemistry. CRC cell lines were subjected to transient siRNA-mediated knockdown to study NPM1's roles on cell viability and senescence. NPM1 transcript levels were 7-11-folds higher in three different human CRC cell lines compared to normal colon cells. NPM1 protein expression was found to be progressively and significantly upregulated in CRC compared to adenomas and in adenomas compared to normal mucosa. Reducing NPM1 expression by siRNA had caused a significant decrease in cell viability, a concomitant increase in cellular senescence and cell cycle arrest. Cellular senescence induced under conditions of forced NPM1 suppression could be prevented by knocking down p53. The differential expression of NPM1 along the normal colon-adenoma-carcinoma progression and its involvement in resisting p53 related senescent growth arrest in CRC cell lines implicate its role in supporting CRC tumorigenesis.
Back to top