Publications
Cold Spring Harbor molecular case studies, 2019
Publication Abstract
Pancreatic neuroendocrine neoplasms (PanNENs) represent a minority of pancreatic neoplasms that exhibit variability in prognosis. Ongoing mutational analyses of PanNENs have found recurrent abnormalities in chromatin remodeling genes (e.g., and ), and mTOR pathway genes (e.g., , , and ), some of which have relevance to patients with related familial syndromes. Most recently, grade 3 PanNENs have been divided into two groups based on differentiation, creating a new group of well-differentiated grade 3 neuroendocrine tumors (PanNETs) that have had a limited whole-genome level characterization to date. In a patient with a metastatic well-differentiated grade 3 PanNET, our study utilized whole-genome sequencing of liver metastases for the comparative analysis and detection of single-nucleotide variants, insertions and deletions, structural variants, and copy-number variants, with their biologic relevance confirmed by RNA sequencing. We found that this tumor most notably exhibited a -disrupting fusion, showed a novel fusion, and lacked any somatic variants in , , and .
International journal of laboratory hematology, 2019
Publication Abstract
Clinical genetic testing in the myeloid malignancies is undergoing a rapid transition from the era of cytogenetics and single-gene testing to an era dominated by next-generation sequencing (NGS). This transition promises to better reveal the genetic alterations underlying disease, but there are distinct risks and benefits associated with different NGS testing platforms. NGS offers the potential benefit of being able to survey alterations across a wider set of genes, but analytic and clinical challenges associated with incidental findings, germ line variation, turnaround time, and limits of detection must be addressed. Additionally, transcriptome-based testing may offer several distinct benefits beyond traditional DNA-based methods. In addition to testing at disease diagnosis, research indicates potential benefits of genetic testing both prior to disease onset and at remission. In this review, we discuss the transition from the era of cytogenetics and single-gene tests to the era of NGS panels and genome-wide sequencing-highlighting both the potential and drawbacks of these novel technologies.
The Journal of biological chemistry, 2019
Publication Abstract
The androgen receptor (AR) is tightly linked to prostate cancer, but the mechanisms by which AR transactivation is dysregulated during cancer progression are not fully explored. Dagar examined AR translocation to the nucleus to identify a link between heat shock protein 90 (HSP90) and protein kinase A (PKA). Their findings provide a potential mechanism of the initiation of AR transactivation and potential targets for developing and refining treatments for prostate cancer.
Cell reports, 2019
Publication Abstract
The sterile alpha motif (SAM) and SRC homology 3 (SH3) domain containing protein 1 (Sash1) acts as a scaffold in TLR4 signaling. We generated Sash1{{sup}}-/-{{/sup}} mice, which die in the perinatal period due to respiratory distress. Constitutive or endothelial-restricted Sash1 loss leads to a delay in maturation of alveolar epithelial cells causing reduced surfactant-associated protein synthesis. We show that Sash1 interacts with β-arrestin 1 downstream of the TLR4 pathway to activate Akt and endothelial nitric oxide synthase (eNOS) in microvascular endothelial cells. Generation of nitric oxide downstream of Sash1 in endothelial cells affects alveolar epithelial cells in a cGMP-dependent manner, inducing maturation of alveolar type 1 and 2 cells. Thus, we identify a critical cell nonautonomous function for Sash1 in embryonic development in which endothelial Sash1 regulates alveolar epithelial cell maturation and promotes pulmonary surfactant production through nitric oxide signaling. Lung immaturity is a major cause of respiratory distress and mortality in preterm infants, and these findings identify the endothelium as a potential target for therapy.
Cancer immunology research, 2019
Publication Abstract
Antitumor T-cell responses raised by first-line therapies such as chemotherapy, radiation, tumor cell vaccines, and viroimmunotherapy tend to be weak, both quantitatively (low frequency) and qualitatively (low affinity). We show here that T cells that recognize tumor-associated antigens can directly kill tumor cells if used at high effector-to-target ratios. However, when these tumor-reactive T cells were present at suboptimal ratios, direct T-cell-mediated tumor cell killing was reduced and the ability of tumor cells to evolve away from a coapplied therapy (oncolytic or suicide gene therapy) was promoted. This T-cell-mediated increase in therapeutic resistance was associated with C to T transition mutations that are characteristic of APOBEC3 cytosine deaminase activity and was induced through a TNFα and protein kinase C-dependent pathway. Short hairpin RNA inhibition of endogenous APOBEC3 reduced rates of tumor escape from oncolytic virus or suicide gene therapy to those seen in the absence of antitumor T-cell coculture. Conversely, overexpression of human APOBEC3B in tumor cells enhanced escape from suicide gene therapy and oncolytic virus therapy both and Our data suggest that weak affinity or low frequency T-cell responses against tumor antigens may contribute to the ability of tumor cells to evolve away from first-line therapies. We conclude that immunotherapies need to be optimized as early as possible so that, if they do not kill the tumor completely, they do not promote treatment resistance.
JAMA network open, 2019
Publication Abstract
A molecular diagnostic method that incorporates information about the transcriptional status of all genes across multiple tissue types can strengthen confidence in cancer diagnosis.
Transfusion medicine reviews, 2019
Publication Abstract
Promising efficacy results of chimeric antigen receptor (CAR) T-cell therapy have been tempered by safety considerations. Our objective was to comprehensively summarize the efficacy and safety of CAR-T cell therapy in patients with relapsed or refractory hematologic or solid malignancies. MEDLINE, Embase, and the Cochrane Register of Controlled Trials (inception - November 21, 2017). Interventional studies investigating CAR-T cell therapy in patients with malignancies were included. Our primary outcome of interest was complete response (defined as the absence of detectable cancer). Two independent reviewers extracted relevant data, assessed risk of bias, and graded the quality of evidence using established methods. A total of 42 hematological malignancy studies and 18 solid tumor studies met were included (913 participants). Of 486 evaluable hematologic patients, 54.4% [95% CI, 42.5%-65.9%] experienced complete response in 27 CD19 CAR-T cell therapy studies. Of 65 evaluable hematologic patients, 24.4% [95% CI, 9.4%-50.3%] experienced complete response in seven non-CD19 CAR-T cell therapy studies. Cytokine release syndrome was experienced by 55.3% [95% CI, 40.3%-69.4%] of patients and neurotoxicity 37.2% [95% CI, 28.6%-46.8%] of patients with hematologic malignancies. Of 86 evaluable solid tumor patients, 4.1% [95% CI, 1.6%-10.6%] experienced complete response in eight CAR-T cell therapy studies. Limitations include heterogeneity of study populations, as well as high risk of bias of included studies. There was a strong signal for efficacy of CAR-T cell therapy in patients with CD19+ hematologic malignancies and no overall signal in solid tumor trials published to date. These results will help inform patients, physicians, and other stakeholders of the benefits and risks associated with CAR-T cell therapy.
Genetics, 2019
Publication Abstract
To understand gene function, the cre/loxP conditional system is the most powerful available for temporal and spatial control of expression in mouse. However, the research community requires more cre recombinase expressing transgenic mouse strains (cre-drivers) that restrict expression to specific cell types. To address these problems, a high-throughput method for large-scale production that produces high-quality results is necessary. Further, endogenous promoters need to be chosen that drive cell type specific expression, or we need to further focus the expression by manipulating the promoter. Here we test the suitability of using knock-ins at the docking site 5' of for rapid development of numerous cre-driver strains focused on expression in adulthood, using an improved cre tamoxifen inducible allele (icre/ERT2), and testing a novel inducible-first, constitutive-ready allele (icre/f3/ERT2/f3). In addition, we test two types of promoters either to capture an endogenous expression pattern (MaxiPromoters), or to restrict expression further using minimal promoter element(s) designed for expression in restricted cell types (MiniPromoters). We provide new cre-driver mouse strains with applicability for brain and eye research. In addition, we demonstrate the feasibility and applicability of using the locus 5' of for the rapid generation of substantial numbers of cre-driver strains. We also provide a new inducible-first constitutive-ready allele to further speed cre-driver generation. Finally, all these strains are available to the research community through The Jackson Laboratory.
Genome biology, 2019
Publication Abstract
Measuring gene expression of tumor clones at single-cell resolution links functional consequences to somatic alterations. Without scalable methods to simultaneously assay DNA and RNA from the same single cell, parallel single-cell DNA and RNA measurements from independent cell populations must be mapped for genome-transcriptome association. We present clonealign, which assigns gene expression states to cancer clones using single-cell RNA and DNA sequencing independently sampled from a heterogeneous population. We apply clonealign to triple-negative breast cancer patient-derived xenografts and high-grade serous ovarian cancer cell lines and discover clone-specific dysregulated biological pathways not visible using either sequencing method alone.
Stem cells and development, 2019