Publications
Primary mediastinal large B-cell lymphoma (PMBL) is a type of aggressive B-cell lymphoma that typically affects young adults, characterized by presence of a bulky anterior mediastinal mass. Lymphomas with gene expression features of PMBL have been described in non-mediastinal sites, raising questions about how these tumors should be classified. Here, we investigated whether these "non-mediastinal PMBLs" are indeed PMBLs or instead represent a distinct group within DLBCL. From a cohort of 325 de novo DLBCL cases, we identified tumors from patients without evidence of anterior mediastinal involvement that expressed a PMBL expression signature (nm-PMBLsig-pos, n=16, 5%). The majority of these tumors expressed MAL and CD23 - proteins typically observed in bona fide PMBL (bf-PMBL). Evaluation of clinical features of nm-PMBLsig-pos cases revealed close associations with DLBCL, and the majority displayed a germinal center B-cell-like cell-of-origin (GCB). In contrast to bf-PMBL, nm-PMBLsig-pos patients presented at an older age, did not show pleural disease, and bone/bone marrow involvement was observed in three cases. However, while clinically distinct from bf-PMBL, nm-PMBL-sig-pos tumors resembled bf-PMBL at the molecular level with upregulation of immune response, JAK-STAT, and NF-kB signatures. Mutational analysis revealed frequent somatic gene mutations in SOCS1, IL4R, ITPKB and STAT6, as well as CD83 and BIRC3, with the latter genes being significantly more frequently affected than in GCB-DLBCL and bf-PMBL. Our data establish nm-PMBLsig-pos lymphomas as a group of DLBCL with distinct phenotypic and genetic features, and potential implications for gene expression- and mutation-based subtyping of aggressive B-cell lymphoma and related targeted therapies.
Analysis of the genomic landscape of prostate cancer has identified different molecular subgroups with relevance for novel or existing targeted therapies. The recent approvals of the poly(ADP-ribose) polymerase (PARP) inhibitors olaparib and rucaparib in the metastatic castration-resistant prostate cancer (mCRPC) setting signal the need to embed molecular diagnostics in the clinical pathway of patients with mCRPC to identify those who can benefit from targeted therapies. Best practice guidelines in overall biospecimen collection and processing for molecular analysis are widely available for several tumour types. However, there is no standard protocol for molecular diagnostic testing in prostate cancer. Here, we provide a series of recommendations on specimen handling, sample pre-analytics, laboratory workflow, and testing pathways to maximise the success rates for clinical genomic analysis in prostate cancer. Early involvement of a multidisciplinary team of pathologists, urologists, oncologists, radiologists, nurses, molecular scientists, and laboratory staff is key to enable optimal workflow for specimen selection and preservation at the time of diagnosis so that samples are available for molecular analysis when required. Given the improved outcome of patients with mCRPC and homologous recombination repair gene alterations who have been treated with PARP inhibitors, there is an urgent need to incorporate high-quality genomic testing in the routine clinical pathway of these patients.
Prostate cancer is the most commonly diagnosed neoplasm in American men. Although existing biomarkers may detect localized prostate cancer, additional strategies are necessary for improving detection and identifying aggressive disease that may require further intervention. One promising, minimally invasive biomarker is cell-free DNA (cfDNA), which consist of short DNA fragments released into circulation by dying or lysed cells that may reflect underlying cancer. Here we investigated whether differences in cfDNA concentration and cfDNA fragment size could improve the sensitivity for detecting more advanced and aggressive prostate cancer. This study included 268 individuals: 34 healthy controls, 112 men with localized prostate cancer who underwent radical prostatectomy (RP), and 122 men with metastatic castration-resistant prostate cancer (mCRPC). Plasma cfDNA concentration and fragment size were quantified with the Qubit 3.0 and the 2100 Bioanalyzer. The potential relationship between cfDNA concentration or fragment size and localized or mCRPC prostate cancer was evaluated with descriptive statistics, logistic regression, and area under the curve analysis with cross-validation. Plasma cfDNA concentrations were elevated in mCRPC patients in comparison to localized disease (OR5ng/mL = 1.34, P = 0.027) or to being a control (OR5ng/mL = 1.69, P = 0.034). Decreased average fragment size was associated with an increased risk of localized disease compared to controls (OR5bp = 0.77, P = 0.0008). This study suggests that while cfDNA concentration can identify mCRPC patients, it is unable to distinguish between healthy individuals and patients with localized prostate cancer. In addition to PSA, average cfDNA fragment size may be an alternative that can differentiate between healthy individuals and those with localized disease, but the low sensitivity and specificity results in an imperfect diagnostic marker. While quantification of cfDNA may provide a quick, cost-effective approach to help guide treatment decisions in advanced disease, its use is limited in the setting of localized prostate cancer.
In our clinical trials of oncolytic vesicular stomatitis virus expressing interferon beta (VSV-IFNβ), several patients achieved initial responses followed by aggressive relapse. We show here that VSV-IFNβ-escape tumors predictably express a point-mutated CSDE1P5S form of the RNA-binding Cold Shock Domain-containing E1 protein, which promotes escape as an inhibitor of VSV replication by disrupting viral transcription. Given time, VSV-IFNβ evolves a compensatory mutation in the P/M Inter-Genic Region which rescues replication in CSDE1P5S cells. These data show that CSDE1 is a major cellular co-factor for VSV replication. However, CSDE1P5S also generates a neo-epitope recognized by non-tolerized T cells. We exploit this predictable neo-antigenesis to drive, and trap, tumors into an escape phenotype, which can be ambushed by vaccination against CSDE1P5S, preventing tumor escape. Combining frontline therapy with escape-targeting immunotherapy will be applicable across multiple therapies which drive tumor mutation/evolution and simultaneously generate novel, targetable immunopeptidomes associated with acquired treatment resistance.
Background: Novel therapies often fail to reach the bedside due to low trial recruitment rates. Prior to conducting one of the first chimeric antigen receptor (CAR) T cell therapy trials in Canada, we used the Theoretical Domains Framework, a novel tool for identifying barriers and enablers to behavior change, to identify physician-related barriers and enablers to screening and recruiting patients for an early phase immunotherapy trial.
Methods: We conducted interviews with hematologists across Canada and used a directed content analysis to identify relevant domains reflecting the key factors that may affect screening and recruitment.
Results: In total, we interviewed 15 hematologists. Physicians expressed "cautious hope"; while expressing safety, feasibility, and screening criteria concerns, 14 out of 15 hematologists intended to screen for the trial (domains: knowledge, goals, beliefs about consequences, intentions). Physicians underscored the "challenging contexts," identifying resources, workload, forgetting, and patient wait times to receive CAR T cells as key practical barriers to screening (domains: environmental context and resources, memory, attention and decision-making, behavioral regulation). They also highlighted "variability in roles and procedures" that may lead to missed trial candidates (domain: social and professional role). Left unaddressed, these barriers may undermine trial recruitment.
Conclusions: This study is among the first to use the Theoretical Domains Framework from the physician perspective to identify recruitment challenges to early phase trials and demonstrates the value of this approach for identifying barriers to screening and recruitment that may not otherwise have been elicited. This approach can optimize trial procedures and may serve to inform future promising early phase cancer therapy trials.
Trial registration: ClinicalTrials.gov Identifier: NCT03765177 . Registered on December 5, 2018.
Objectives: MET exon 14 skipping is a potentially targetable molecular alteration. The goals of this study were to identify patients treated in British Columbia with MET exon 14 skipping to understand prevalence, biology and response to treatment, and to identify molecular signatures that may predict for response or resistance to targeted MET therapy in the setting of advanced disease.
Materials and methods: A retrospective review was completed of patients found to have MET exon 14 skipping alterations between January 2016-September 2019. Information was collected on baseline characteristics, response to systemic treatments, and outcomes.
Results: Out of 1934 advanced, non-squamous and never-smoking squamous NSCLC patients tested, 41 patients were found to have MET exon 14 skipping (2.1 %). MET alteration types: 2% CBL binding-domain mutations, 34 % poly-pyrimidine tract deletions, 63 % splice donor mutations or deletions. The most common co-mutation was TP53 (22 %). Thirty-three patients received systemic therapy. Physician-assessed disease control was 68 % among 19 evaluable patients treated with crizotinib, 80 % among 10 evaluable patients treated with platinum-based chemotherapy, and 70 % among 10 evaluable patients treated with immunotherapy. Median time to treatment discontinuation was 3.0, 2.8, and 2.4 months, respectively. Median overall survival for metastatic patients treated with any systemic therapy was 15.4 months. In this small cohort, there were no clear correlations between molecular aberrations and response, time to treatment discontinuation, or survival for crizotinib, chemotherapy, and immunotherapy.
Conclusion: The prevalence of MET exon 14 skipping in a North American population was 2.1 %. Unlike other targetable mutations, patients were older and more commonly current or former smokers. Patients with MET exon 14 skipping alteration demonstrate disease control with crizotinib, platinum-based chemotherapy and immunotherapy. Co-mutations with TP53 were commonly noted, but correlation between co-mutations and efficacy of therapy were not identified in this cohort.
The ability of nanopore sequencing to simultaneously detect modified nucleotides while producing long reads makes it ideal for detecting and phasing allele-specific methylation. However, there is currently no complete software for detecting SNPs, phasing haplotypes, and mapping methylation to these from nanopore sequence data. Here, we present NanoMethPhase, a software tool to phase 5-methylcytosine from nanopore sequencing. We also present SNVoter, which can post-process nanopore SNV calls to improve accuracy in low coverage regions. Together, these tools can accurately detect allele-specific methylation genome-wide using nanopore sequence data with low coverage of about ten-fold redundancy.