
FindPeaks 3.1.9 Manual

Anthony P. Fejes, 
afejes@bcgsc.ca
Graduate Student

University of British Columbia

Research performed through:
BC Cancer Agency

Genome Sciences Centre, 
Vancouver BC, Canada

Document last edited: May 6, 2008

Last Changed Rev: 38259 
Last Changed Date: 2008-05-01 09:52:03 -0700 (Thu, 01 May 2008) 

To cite this work, please contact the author for an up to date reference. 

Please note that this software is for academic use only.  It does not guarantee any results, and no 
warranty is implied by its distribution.

Please contact the author by email with suggestions, comments and code modifications, all of 
which are gratefully accepted.  



INTRODUCTION:

FindPeaks was designed to identify areas of enrichment from massively parallel short-read sequencing 
data sets.  It has since been expanded to include several new modules such that it can be useful on several new 
fields.

Areas of enrichment are typically identified by the height and the width of the peak observed, when 
sequenced fragments are mapped to the genome.  However, simply looking at these two parameters fails to take 
into account many complexities involved.  When two areas of enrichment are in close proximity, they will overlap 
and the relationship between the two peaks becomes more difficult to untangle.

FindPeaks does not using a sliding window algorithm.  Instead, the collection of sequences for each 
chromosome is read and sorted by location, creating a list that is then traversed to identify regions with overlap. 
These regions are then independently processed, and checked against the minimum height criteria to be categorized 
as a peak.  As each region is found, it is processed using the options that are specified on the command line, which 
may include the -directional, -trim and -subpeaks flags.

FONTS USED IN THIS DOCUMENT:

This document uses a common convention of marking executable commands and URLs using a fixed width 
monotype (FreeMono) font.  Thus, commands that may be executed or used in a browser will appear in this 
font.  All other text, explanations and guidance will be written in the FreeSerif font.

CURRENT SVN LOCATION (Developers only):

FindPeaks source code is currently available (only) to developers at the Genome Science Centre through 
the local SVN repository.  The FindPeaks code is part of a larger code-base of Java programs using a common 
infrastructure.  To obtain an SVN version of the code, check out the following location (password required.)

https://svn01.bcgsc.ca/svn/Illumina_Java/trunk 

Tagged versions (from FindPeaks 2.0 to current)  can be obtained from

https://svn01.bcgsc.ca/svn/Illumina_Java/tags

BUILDING FINDPEAKS (Developers only):

FindPeaks 3.1.x from SVN can be built using the ant utility (ant package required).  On Debian/Ubuntu based 
systems, installing ant can be done with the command:

sudo apt-get install ant

Once installed, building FindPeaks can be performed by entering the root directory of the project (eg. For 
developers using the standard Eclipse work space structure:  /home/name/workspace/Illumina_Java/) and issuing 
the command:

ant fpsuite

MEMORY USE:

FindPeaks version 3.1.9+ uses less than 1Gb of RAM for up to 17M sequence reads.  Because memory 
requirements generally scale with the number of reads, your memory usage will vary.  

WORK FLOW:



It is suggested that when using Eland files, they be pre-processed to remove non-unique alignents before 
using the FindPeaks application.  This includes the removal of non-aligned reads, reads aligned to multiple 
locations and reads which fail QA tests.  Thus, the following filtering step is suggested to assist in preparing your 
Eland files before use:

Retain only unique hits from an Eland file:

grep “U[012]” Input.eland > Input.um.eland

To begin the FindPeaks work flow, it is necessary to separate your reads into files, each of which contains 
a separate chromosome.  To do this, the SeparateElandReads utility has been provided, which is able to process 
both .eland and .eland.gz files natively, and will produce *.part.eland.gz files, where * is the name of the individual 
chromosomes.  An extra file, meta_info.txt, is also printed out which contains a summary of the number of reads 
found in each gzipped file and the total number of reads parsed.

For developers using the compiled source code:

cd /home/afejes/workspace/FindPeaks/classes

time java src/fileUtilities/SeparateElandReads
/path/to/files/Input.noDots.um.eland /output_dir/

For users of the pre-packaged jar files:

time java -jar SeparateElandReads.jar
/path/to/files/Input.noDots.um.eland /output_dir/

Once the files have been successfully separated, FindPeaks can be run on the data set.

For developers using the compiled source code:

time java src/projects/findPeaks/FindPeaks -name test -dist_type 1 200 
-minimum 1 -eff_size 2.156E9 -output /output_dir/ -input 
/path/to/files/*.part.eland.gz 

For users of the pre-packaged jar files:

time java -jar FindPeaks.jar -name test -dist_type 1 200 -minimum 1 -eff_size 
2.156E9 -output /output_dir/ -input /path/to/files/*.part.eland.gz

NOTES:

1) Chromosome naming in eland files: The naming of chromosomes varies between institutes, and is thus 
difficult to anticipate at run time.  GSC behaviour typically involves providing the name of the 
chromosome as either an integer or char value (e.g. 1, 5,19, X, Y, etc), or as a NCBI name (e.g, starting 
with Homo_sapiens.NCBI36.42.dna.chromosome”).  Where neither of these applies, Findpeaks will 
process the string provided in the eland file by trimming off a prefix of “chr” (if it exists), any information 
prior to and including a “\” character (if it exists) and any information including and following the final 
“.” character (if it exists).  This should remove any directory structure and file extension information.

2) When writing a wig file, the chromosome name will be pre-pended with a “chr” string to conform to 
UCSC formatting.

3) For large data sets, the standard amount of memory allocated to the java process may be insufficient.  This 
can be managed by allocating more memory, when available, by using the “-Xmx” flag.  This is done by 
issuing the flag directly after the java command and providing the amount of memory to be allocated.  As 
an example, allocating 4Gb of ram would be done by writing “time java -Xmx4G FindPeaks.jar ....”

FIND PEAKS PARAMETERS:

 -help   



Prints an abbreviated list of available parameters 

-aligner <char>

Determines which aligner input to use:

E: uses Eland input
B: Uses Bed format files. (Special version available from Anthony Fejes upon request only.)
X: uses Exonerate (Vulgar) input (Experimental – untested)
2: uses Eland Extended input mode (Experimental –  expected in FindPeaks 3.2.x)

If flag is omitted: defaults to Eland mode

-directional

Engages directional mode, which considers directional reads for identifying the location of the maximum 
peak height.  This may be useful for refining narrow peaks and filtering out noise.

If flag is omitted: directional mode is not engaged.

-dist_type <integer> [<integer>]

0: fixed width model:  If used, it must be followed by an integer value representing the fixed with of the 
sequences used. All reads are then assumed to be that length.  This mode is provided for backwards 
compatibility with FindPeaks 1 and FindPeaks 2.1.4 modes and is not suggested for production use.

1: triangle distribution: this assumes a triangle based distribution in which fragments have a minimum 
length of 100, a maximum length of 300, and a user supplied median size.   If used, it must be followed by 
an Integer value representing the median value of the distribution. When used for creating the adaptive 
distribution (boot strap), a the median value defaults to 174.  Graph below was generated with a median 
value of 200.

2: Adaptive (sampled) distribution:  This mode will sample the reads on a full chromosome, and 
determine the median distance from the peak sites.  From this distribution, it determines the sample 
fragment distribution. (It does not determine the distribution of the original fragment sizes.) (Currently 
disabled for non-GSC users while testing is ongoing.)

3: Native mode: This mode uses the actual length of the sequences themselves.  This mode was provided 



for generating wig files showing the sequence coverage across the genome of interest,  however, it has 
undergone minimal testing, and thus the authors suggest that the ElandtoBed application, which provides 
very similar information, be used instead.

If flag is omitted: defaults to type 1, triangle distribution.  This mode is suggested for most applications. 
Current recommended values are “-dist_type 1 200”.

 -eff_size <float>

This is the effective genome size used for the FindPeaks FDR modules, and used as the length of the 
chromosome generated when generating an R script for postscript preparation.

Current estimates done at the BC Genome Science Centre show that ~70% of human and mouse genomes 
may be mapped using ~32 base alignments, thus, recommended values for the human and mouse genomes 
are:

Organism Calculation Effective Genome Size Database

Human 70% of 3.080 Gb 2.156e9 UCSC hg18

Mouse 70% of 2.655 Gb 1.8655e9 UCSC mm9

If flag is omitted: program will not run.

 -filter 

Turns on duplicate filtering.  Filtering is currently only performed to remove reads in the same direction 
that share a start location.

If flag is omitted: duplicate filtering is off.

 -hist_size <integer>

The number of cells in the output FDR histogram.  The length of the histogram does not affect the running 
of the FindPeaks application, but only the maximum height for which data is shown in the final summary. 
Histogram always starts at one.

If flag is omitted: histogram size is set to 30.

 -input <String> [<String> <String>...]

The set of eland files to read. A minimum of one file must be provided.  A maximum of one file is used in 
R script mode  Each file is treated as a separate chromosome. Wild card expressions are acceptable, if 
allowed by the Operating System in use. (e.g /path/*.part.eland.gz)

If flag is omitted: program will not run.

-mcfdr [<integer>]

Turns on the Monte Carlo simulator.  This performs a user defined number of iterations, to provide a 
simple random MC model of expected peak heights.  

Algorithm: Each iteration uses the same number of valid reads and the effective genome size of the 
processed data to recreate a non-enriched distribution from which a false discovery rate can be estimated. 
Random locations are generated for each read, which are then processed using the FindPeaks application 
and the same functions used to process the input files are used to count the number of peaks obtained. 
Note: the -filter flag is not used by the MCFDR algorithm, even if used while processing the input files, 
however, the post “-filter” number of reads from the input files are used.



If flag is omitted: FDR is generated using the FindPeaks 1.0 method, which is no longer supported
If trailing integer value is omitted: a default 3 iterations will be run.

Note: in version 3.1.9+, the MCFDR algorithm is dramatically faster than previous versions, and a 
minimum of 10 iterations is suggested for accuracy.

 -minimum <integer>

This sets the minimum peak size to be output.  All peaks below this height will not be included in the 
output files.  This may be used with the “-subpeaks” flag, and only sub-peaks above this height will be 
retained.

If flag is omitted: default value is set to 1.

 -name <String>

This is the name of the data set.  It's used for naming output files, as well as track names for wig files.

If flag is omitted: defaults to “FP3output”

-no_peaks_header

This flag turns off a header line in the peaks file.  When processing for use with a database, it is 
recommended to turn this off to prevent the need to strip the line out manually.

If flag is omitted: a header line is written to output peaks files.

-one_per

This file allows you to create one wig file per chromosome.  Each input file is processed to a separate wig 
file, however only one peaks file will be created for the collection of processed chromosomes.

If flag is omitted: defaults to all wig data being placed in one file.

-output <String>

Where to put the output files.  Should be an existing path.  A trailing slash will be appended, if one is not 
provided.

If flag is omitted: program will not run.

-subpeaks <float> 

Turns on the subpeaks module, to perform peak separation. 

Algorithm: All sequence reads that overlap in an “area of enrichment” are collected and their weights at 
each position are summed.  All positions which are local maxima are identified and collected into an array 
in sequential order.  The array containing the local maxima is then inspected in a local pair-wise manner in 
which each set of nearest neighbors is identified.  The heights of each pair of maxima are then compared, 
and the lowest value is taken.  This value is then multiplied by the float provided with the -subpeaks flag 
to yield the minimum valley depth required to classify the two peaks as distinct peaks. The intervening 
area of enrichment between the two local maxima is then searched for values that are lower then the 
minimum valley depth.  If found, the two peaks are then separated, with a single base pair gap, 
corresponding to the deepest local minima separating the two maxima.  If a value lower than the minimum 
valley depth is not found, the lower of the two peaks is removed from the array of local maxima, and will 
not appear as a separate peak in the peaks file, and may not appear in the wig file.

If flag is omitted: subpeaks is not turned on and each area of enrichment will be considered as a single 
peak.

-trim <float>



The float value is used to determine the amount of the shoulder of each peak retained. 

When used with the subpeaks algorithm, each separate peak is trimmed individually. To the fraction value 
provided.  

Algorithm: Each local maxima located with the subpeaks method, or the global maxima for the area of 
enrichment is used as the focus for the trim algorithm.  The local or global maxima is selected, and it's 
value is multiplied by the float value provided with the -trim flag at run time, to yield the shoulder trim 
minimum.  From the location of the maximum, the application then walks one base at a time in either 
direction towards the “ends” of the peak, and compares the height at that position to the shoulder trim 
minimum.  Once a value is found that falls below the shoulder trim minimum, all positions between that 
location and the “end” of the peak are set to zero.  Note: this may “trim” off local maxima that were not 
identified by the subpeak algorithm.  Those which were identified by the subpeak algorithm as being 
separate sub-peaks will not be lost.

If flag is omitted, trimming will not be engaged.

-Rmode

Turns on the R script mode.  All output comes in the form of an R script, which will produce a postscript 
representation of a single chromosome.

If flag is omitted: R mode is not used.

EXAMPLES:

Use for generating verbose wig files

● No height cut off
● Histogram not required: set histogram size to 1. 
● Use Fixed length mode: set to 200 fragment length size
● Optional: use “-minimum 2” to prevent single reads in areas without enrichment from being written out. 

This will reduce the size of the files created.
● Optional: use “-one_per” to split up wig files by chromosome, to prevent file size from becoming too 

large

For users of the pre-packaged jar files:

java -jar FindPeaks.jar -input /input_dir/*.part.eland.gz -name test 
-dist_type 0 200 -hist_size 1 -eff_size 2.156E9 -output /output_dir/ 

Use for generating postscript files

● use -Rmode flag
● Use a minimum height threshold (improves readability of graphics and decreases processing time required 

by R. (set according to desired FDR cutoff)



For users of the pre-packaged jar files:

java -jar FindPeaks.jar -input /input_dir/*.part.eland.gz 
-output /output_dir/ -minimum 15 -Rmode -name test -dist_type 0 200  
-eff_size 2.156E9

Use R to process output script:

source(“filename”)

Example output from the -Rmode flag (Generated from Chr 17 of STAT1 ChiIP-Seq of IFN-G stimulated 
Stimulated HeLa S3 cells):

Use for ChIP-Seq analysis:

● Use mode 1, median of 200.
● Use a large histogram (100)
● Use subpeaks to identify peaks maxima in overlapping areas of enrichment
● Use trim to remove shoulders.
● Use MCFDR module to estimate FDR rates
● Use minimum to retain only hits above the desired FDR.

For users of the pre-packaged jar files:

java -jar FindPeaks.jar -name test -dist_type 1 200 -minimum 8 
-hist_size 100 -eff_size 2.156E9 -trim .2  -subpeaks .5 -output 
/output_dir/ -input /input_dir/*.part.eland.gz -mcfdr 20

Use for transcription factors 

● Use mode 1, median of 200
● Use a large histogram (50+)
● Use subpeaks to identify peaks maxima in overlapping areas of enrichment
● Use trim to remove shoulders.
● Use MCFDR module to estimate FDR rates
● Use minimum to retain only hits above the desired FDR.
● Use directional flag to use only hits contributing to a peak.
● Use filter to remove “duplicate” reads

For users of the pre-packaged jar files:

java -jar FindPeaks.jar -name test -dist_type 1 200 -minimum 8 
-hist_size 100 -eff_size 2.156E9 -trim .4 -subpeaks .7 -output 
/output_dir/ -input /path/to/files/*.part.eland.gz -mcfdr 20 
-directional -filter

OUTPUT:

Wig File:

The wig file produced is a standard gzipped UCSC compatible wig file.  For information on the wig file 
format, please visit http://genome.ucsc.edu/google/goldenPath/help/wiggle.html



Example (generated from test data – see below):

Peaks File:

The peaks file contains the peaks identified using the parameters supplied by the user. The columns are:
ID: A unique identifier for each peak identified for simplified referencing.
chromosome: The chromosome where the peak was identified.
Start location: The start coordinate of the peak, according to the trimming algorithm requested.
End location: The end coordinate of the peak, according to the trimming algorithm requested.
peak maximum location: The location of the peak maximum.
maximum height: The greatest value observed in the region specified by the start and end 

locations.

Output is produced using a zero based coordinate system.

Example (generated from test data – see below, “-subpeaks 0.7” on.):

id chrom start end max_coord score 
1 22 21885493 21885792 21885543 1.0 
2 22 21885836 21886136 21886136 3.119 
3 22 21886138 21886374 21886220 3.971 
4 22 21886376 21886499 21886376 1.490 
5 22 21886501 21887016 21886796 4.750 
6 22 21887018 21887876 21887728 77.201 
7 22 21887878 21888791 21888100 159.824 
8 22 21888793 21889484 21888977 8.759 
9 22 21889486 21889807 21889622 2.630 
10 22 21889809 21890185 21889897 2.0 

TEST DATA:

FindPeaks 3.1 9+ comes with a test file (22.test.eland), which contains a 521 lines of data from Robertson 
et al's STAT1 experiment. (Interferon Gamma stimulated HeLa S3 cells.) When run with FindPeaks, this data set 
will generate one peak of height 159.824, one peak of height 1 and one peak of height 2 when run with the 
following options:

java -jar FindPeaks.jar -input 22.test.eland -output /output/directory/ 
-eff_size 5000 -dist_type 1 200 -directional -filter -hist_size 200 

When run with -subpeaks turned on

java -jar FindPeaks.jar -input 22.test.eland -output /output/directory/ 
-eff_size 5000 -dist_type 1 200 -directional -filter -hist_size 200 
–subpeaks .7

The following peaks heights are found :  (See Output section above) 
1.0 1.490 2.0 2.630 3.119 3.971 4.750  8.759  77.201  159.824



Other Java Applications

ALIGNSLICE:

-map

This flag engages the mappability modules, which attempt to generate a mappability track to accompany 
the requested slice of aligned reads from the genome. Mappability is currently only available for human, 
and for internal users of the GSC.

If omitted, mappability mode will not be engaged, and mappability tracks will not be generated.

-text

Uses the text file representation of the output, including the canonical sequence and mappability track.

If omitted, text mode will not be engaged. (wig files will be generated instead.)

-chr <string>

The chromosome identifier.  For human chromosomes, and many mammals, this will be an integer value 
(e.g. 1, 3, 5, 22,  X, Y, MT)

If omitted, program will not run.

-start <integer>

The start coordinate (zero based) of the slice for which the wig or text file will be generated.

If omitted, program will not run.

-end <integer>

The end coordinate (zero based) of the slice for which the wig or text file will be generated.

If omitted, program will not run.

-out <string>

The filename (and optional path) to which the slice should be written out.  If the -text flag is used a .txt 
file extension will automatically be added.  If the -text flag is not used, “._map.wig.gz” and “.wig.gz” 
extensions will be created for the mappability file (optional) and the wig file generated.

If omitted, program will not run.

-size <integer>

A fixed size (xset) value that must be used to determine the size of the fragment indicated.

If omitted, program will not run.

-species <string>

This string is required for determining the cannoical sequence, as well as the mappability of the organism 
in the selected region.

Mappability is currently only available for human (See -map).

If omitted, “human” is assumed.



-input

The source Eland or gziped eland files from which to build the list of aligned reads.

If omitted, program will not run.

ELANDTOBED:

-input <Strings>

The full list of files that should be processed using this program.  Filenames are preserved from the final 
slash/backslash in the filename provided.  The files must be separated by chromosome prior to using this 
program. (See SeparateElandReads)

-output <String>

The directory into which the files should be placed. 

-name <String>

 File names are created with the chromosome number, this parameter, and appended with the extension 
“.bed.gz”. 

Example:

For users of the pre-packaged jar files:

java -Xmx4G -jar ElandtoBed.jar -input /input_dir/*.part.eland.gz 
-output /output_dir/ -name HS0419

Graphic example of five reads aligned to chromosome 21 using ElandtoBed:

VULGARTOBED:

-input <Strings>

The full list of files that should be processed using this program.  Filenames are preserved from the final 
slash/backslash in the filename provided.  The reads do not need to be separated by chromosome before 
using this program.

-output <String>

The directory into which the files should be placed. 

-name <String>

 File names are created with the chromosome number, this parameter, and appended with the extension 
“.bed.gz”

Example:



For users of the pre-packaged jar files:

java -Xmx4G -jar VulgartoBed.jar -input
/input_dir/*.part.eland.gz -output /output_dir/ -name HS0419



Additional Information

BUG REPORTS:

Bug reports can be sent to afejes@bcgsc.ca, along with a complete description of the problem, 
and relevant supporting information.  

● For all bugs, please send the command used to execute the application, and the output provided 
by the program.

● If you are getting errors on input, please send the first 10 lines of your input file along with your 
bug report.  (ie. on a linux system, use “head -10 [input_file] >  [output_file]”. and send the 
output file with your report.)

● If you have a problem with the output, please send a text file of ALL of the screen output.

FUTURE DEVELOPMENT (road map):

● See the GSC jira ticket filing system at http://gin.bcgsc.ca/jira (Internal BCGSC traffic only)

CREDITS:

FindPeaks 1.0 was written by Matthew Bainbridge, with assistance by Gordon Robertson.

FindPeaks 2 was rewritten by Anthony Fejes, with Q.A testing done by Mikhail Bilenky and 
Gordon Robertson

FindPeaks 3 was developed by Anthony Fejes based upon the FindPeaks 2.1.4 code.

Triangle Distribution was suggested by Mikhail Bilenky, Genome Sciences Centre, Vancouver, 
BC.

The author would also like to thank members of the community who have contributed their 
feedback to improving this document and the FindPeaks program:

Sumit Middha, Mayo Clinic, USA
Blaise T.F. Alako, Nijmegen, The Netherlands 


