
insight review articles

NATURE | VOL 405 | 15 JUNE 2000 | www.nature.com 847

It is now 135 years since the Bohemian monk Gregor
Mendel published the results of his breeding
experiments on the garden pea, which initiated the
modern era of the study of genetics. In Mendel’s
time, the abounding theory of heredity postulated a

‘blending’ of the inherited contributions from the two
parents. Mendel’s work clearly showed that such blending
did not occur, and led to his conclusion of particulate
inheritance (the ‘gene’) and rules of segregation. The
relevance of Mendel’s work for human traits was first
delineated around the turn of the century by Garrod, who
reasoned correctly that similar types of transmission rules
explained the ‘inborn errors of metabolism’ typically
caused by enzyme deficiencies. At the same time, however,
there was another school of thought, primarily emanating
from statisticians such as Francis Galton and his student,
Karl Pearson. They observed family resemblance for a
variety of traits such as anthropometric features and
intellectual achievement but they could not discern
patterns of inheritance in families that were consistent
with mendelian laws. Rather, a ‘blending’-type theory
seemed more apt, as children’s phenotypes tended to be,
on average, midway between the parents, with some
variability. The resolution of this dilemma did not appear
until 1918, when Ronald Fisher published his seminal
paper describing ‘polygenic’ inheritance. Fisher reconciled
the two conflicting schools by recognizing that the critical
difference lay in the genetic basis for the variation in the
trait being studied.

For the traits Mendel studied, the observed variation
was due to a simple difference at a single gene (or locus). On
the other hand, for the traits studied by the biometrical
school, individual differences were not attributable to 
different alleles at a single locus. Rather, many different
genes, each with allelic variations, contributed to the total
observed variability in a trait, with no particular gene 
having a singly large effect. Thus, an individual phenotype
results from the sum total of the effects of all the numerous
contributing loci. Furthermore, application of the central
limit theorem from statistics implicates a continuous 
normal distribution in the population for such a trait, 
similar to what is observed. Thus, the lack of mendelian
inheritance patterns for numerous human traits did not
require the deconstruction of Mendel’s theory, but rather
an extension of it to a more complex scenario that related
genes to phenotype. It is clear that Mendel’s success hinged

entirely on his selection of single-gene traits, for otherwise
the simple rules of inheritance would not have revealed
themselves.

The past two decades has witnessed an explosion in both
molecular and computational technology, which has
enabled the identification of genes for a number of inherited
human disorders. These successes have been restricted
largely to simple mendelian cases, which are by their nature
rare, and although important to the individuals who carry
these genes, of limited significance in terms of public health.
The promise of the same technology solving the problem of
more frequent, non-mendelian familial disorders has large-
ly been unfulfilled. At the same time, at this turn of the 
millennium, we now find ourselves at the threshold of 
having the entire human DNA sequence on hand (or at least
in silica). It is therefore timely to consider how this new
information can best be used in future gene-finding studies,
and prospects for success.

The genetic basis of human traits and disease
Critical to the discussion of what approaches are best suited
to unravel the genetic basis of traits or disease in the new 
millennium is a working model of what that basis is likely to
entail. So far, we still have a view that primarily reflects the
Mendelist–biometricist dialogue of nearly a century ago.
Most human disorders that have been genetically character-
ized are mendelian, essentially because the extant molecular
tools have enabled the identification of these genes by 
positional cloning (described later), a procedure now
described as ‘routine’. By contrast, those disorders or traits
for which such approaches have failed are depicted as ‘poly-
genic’, multifactorial or ‘complex’. Often unwilling to cede to
a notion of ‘infinite’ genetic complexity, geneticists refer to
these cases as ‘oligogenic’ or ‘multigenic’, implicating a
tractable degree of complexity.

If one considers that there are estimated to be approxi-
mately 100,000 functional genes in humans and functional
variation may exist in any of them, the problem becomes
apparent. If the genetic variation that contributes to a trait is
due to myriad genes, each of modest effect, the task of identi-
fying those individual contributors becomes monumental.
The fact is, however, that gene effects typically come in 
different sizes, even when there are many of them — at least,
this has been the lesson from a lengthy history of model 
systems. There are several measures of gene effects used by
geneticists (Box 1). Many human traits, especially disease
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outcomes, show family recurrence patterns that are strongly sugges-
tive of interactions between genes or epistasis, implying the existence
of multiple, interacting loci.

Finding genes — a historical perspective
Before the early 1980s, genetic risk factors for a disease or trait could
be identified only through direct analysis of candidate genes, usually
through association studies. Starting soon after their discovery,
blood-group systems such as ABO, MN and Rh were tested directly
against an array of human diseases, typically with little replicability.
However, after the study of tens of thousands of subjects, it seems that
ABO shows consistent, but weak, association with a number of traits
involving the gastrointestinal tract1. 
Case–control studies
The approach often used for such studies is the case–control design,
in which a difference in allele frequency is sought between affected
individuals and unrelated unaffected controls. From an epidemio-
logical perspective, a major limitation in this approach is the 
potential for confounding (that is, spurious association resulting

from correlation with the true risk factor) leading to artefactual as
opposed to causal associations. In this case, the most likely source of
confounding is ethnicity, whereby allele frequencies vary by ethnicity
and cases and controls are not adequately matched in terms of 
ethnicity. Although most investigators would at least attempt coarse
matching by major demographic groupings (such as race), substrati-
fication within racial groups can still lead to bias. This drawback of
traditional case–control designs was recognized early on by Lionel
Penrose, who recommended the use of unaffected sibs as controls2.
This paradigm, originally applied to ABO and duodenal ulcer3, has
seen a resurgence in the past few years4–8. The disadvantage of this
design is that sib controls are over-matched to the index cases, leading
to a loss of power compared with a well-designed study involving
unrelated controls7.

Conventional case–control gene-association studies have a long
track record of false-positive results. The high false-positive rate has
often been attributed to confounding due to stratification, although
this has never been proven. It is more likely that the high false-
positive rate results from a low prior probability that the few gene
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Figure 1 Examples of mendelian and non-mendelian inheritance using a gaussian
model. Both loci have the same heritability HL = 12%. a, Dominant mendelian locus
with allele frequency p = 0.00275 and displacement t = 5 s.d. Disease occurs above
the threshold of 3 s.d. Disease risk for heterozygotes (Aa) is 98% and for homozygotes
(aa) it is 0.13%. The population prevalence K = 0.67%. b, Non-mendelian additive
locus with allele frequency p = 0.40 and displacement t = 0.5 s.d. for each A allele (or
total displacement t = 1). Disease occurs above the threshold of 2.5 s.d. Disease risk
for high-risk homozygotes (AA) is 6.7%, for heterozygotes (Aa) it is 2.3% and for low-
risk homozygotes (aa) it is 0.62%. The population disease prevalence K = 2.4%. Even
though the locus is additive on the liability scale, the disease risks are non-additive.
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Figure 2 Examples of two-locus genetic models. a, Genetic heterogeneity with two
rare dominant mendelian alleles (A and B) each with a frequency p = 0.01. The
displacement t for each A and B allele is 5 s.d. Disease risk for each heterozygote is
98% whereas for normal homozygotes it is 0.13%. Other genotypes are extremely
rare. Population disease prevalence K = 4%. b, Additive non-mendelian model. The A
and B allele each have frequency p = 0.10. Displacement is 1 s.d. for each A or B
allele, or total displacement t = 2 for each locus. Disease occurs above a threshold of
2.5 s.d. Disease risk for genotype aabb is 0.62%; for genotypes Aabb and aaBb it is
6.7%; for genotypes AaBb, AAbb, aaBB it is 31%; and for genotypes AABb, AaBB
(rare, not shown) it is 69%. Population disease prevalence K = 4%. Although the two
loci are additive on the liability scale, the disease risks are non-additive and show both
dominance and epistasis effects.
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polymorphisms examined are in fact causally related to the disease
outcomes studied. A case in point relates to another locus (or set of
loci) for which the track record has been much better — the human
leukocyte antigen (HLA) system on the short arm of chromosome 6
(chromosome 6p). Associations between specific HLA antigens and
a variety of diseases (mostly autoimmune) have been reported and
repeatedly confirmed — for example, with insulin-dependent 
diabetes mellitus, multiple sclerosis, rheumatoid arthritis, psoriasis,
celiac disease, narcolepsy, haemochromatosis, and many others. 
The greater success rate in this case reflects the much higher prior
probability of a causal relationship for this complex of loci than for
other tested loci.
Linkage analysis and positional cloning
The situation of gene discovery in humans changed markedly two
decades ago when it was recognized that variations in human DNA
could be assayed directly and used as genetic markers in linkage stud-
ies9. The evolution of the field since then has been nothing short of
dramatic. Before this time, human geneticists performing linkage
studies to identify the chromosomal location of disease genes relied
on only a handful of blood group and serum protein markers with

few successes. The identification of restriction-fragment length 
polymorphism (RLFP) markers9 and subsequently abundant highly
polymorphic microsatellite (short tandemly repetitive DNA) loci10,11

has led to the mapping of myriad mendelian disease loci. Develop-
ment of more efficient molecular tools, especially high-throughput
DNA sequencing, has enabled the identification of disease loci and
their mutations by a process characterized as positional cloning. 
Naturally occurring mutations are identified on the basis of their
chromosomal location by taking advantage of the meiotic process of
recombination as manifest in families segregating for the disease.
Markers closest to the disease gene show the strongest correlation
with disease patterns in families, and typically the tracking of recom-
bination events can narrow the region harbouring a disease gene to
between 100 and several thousand kilobases.

The remarkable success of positional cloning rests not simply on
the advances observed in molecular technology. It also reflects the
enormous power of linkage analysis when applied to mendelian 
phenotypes — that is, those characterized by a (near) one-to-one
correspondence between genotypes at a single locus and the observed
phenotype (a glossary of terms is presented in Box 3). In terms of 

The notion of numerous factors contributing to a trait, be they genetic
or environmental, lends itself naturally to a gaussian (or normal)
population distribution for the cumulative effect of those factors. This
is the fundamental precept of biometrical genetics. Thus, for
continuously measurable traits, it is simplest to characterize gene
effects in the context of the gaussian distribution. If we consider a
single locus L with two variant alleles A and a with population
frequencies p and q = 1 – p respectively, there are two important
measures we can define44. The first is termed displacement, 
denoted by t, which is the number of standard deviations 
difference between the mean values of the two homozygotes AA
and aa (we assume, for simplicity, that the variance within genotype 
is the same for each genotype). There is an additional parameter, d,
representing the mean value of heterozygotes Aa relative to the two
homozygotes. Thus, a value of d = 1 corresponds to equal means 
for genotypes AA and Aa (that is, A is dominant), whereas d = 0
corresponds to equal means for genotypes Aa and aa (that is, A is
recessive). A value of d = 0.5 corresponds to the heterozygotes 
being exactly intermediate between the two homozygotes, a 
situation often described as additive. The second important 
measure of gene effect is the population variance attributable to
segregation of the gene. This is given by VG(L) = VA(L) + VD(L), where
VA(L) = 2pqt2(p(1 – d)+qd)2 is the ‘additive’ genetic variance and 
VD(L) = p2q2t2(d – 0.5)2 is the ‘dominance’ genetic variance. The
proportion of total variance attributable to locus A, which we 
denote h2

L, is then given by VG(L)/(1 + VG(L)), assuming the variance
within genotype to be 1.0. It is important to note that h2

L is a 
function of both displacement t and the allele frequency p. Thus, 
a rare gene with large displacement (that is, mendelian) may
contribute the same proportion to variance as a common gene 
with modest displacement (that is, non-mendelian; see Fig. 1). In
addition, because h2

L is a function of p, its value can vary from one
population to another when p varies, even when the displacement 
t is the same.

The gaussian model described above has a direct extension to
discrete outcomes (for example, affected/unaffected). In this case,
the quantitative genetic variable is latent (unobserved) and often
described as the genetic ‘liability’. Superimposed on the genetic-
liability distribution is a risk function, so that risk of disease also
increases continuously with liability. If one assumes a gaussian 
form for this risk function, the model can be characterized as a
‘threshold’ model, wherein total liability is defined as the sum of

genetic and non-genetic liabilities, and disease occurs when an
individual’s total liability exceeds a threshold T. As in the case of
continuous outcomes, a single locus can influence the distribution 
of liability, where individual genotypes have different mean liabilities
(see Fig. 1). The same measures used for quantitative outcomes 
can also be used here — namely displacement and proportion of
variance explained, measured on the scale of liability.

Alternatively, one can conceptualize measures of gene effect on
the scale of risk rather than liability. For example, classical measures
from epidemiology, such as the relative risk, can be used to quantify
the risk of disease for one genotype (say AA) compared to another
(say aa), a concept termed the genotype relative risk or genotypic risk
ratio (GRR)45. The GRR is analogous to displacement, in that it
measures the effect of a particular allele or genotype, independent of
its frequency. Another useful, more complex measure is the sibling
relative risk (ls) attributable to locus L (ratio of risk to sibs of an
affected case to the population prevalence)46. If the GRR for genotype
AA is g2 and that for genotype Aa is g1, and the frequency of allele A
is p and q = 1 – p, ls can be calculated as 1 + (1/2VA + 1/4VD)/K2,
where K = p2g2 + 2pqg1 + q2,  VA = 2pq(p(g2 – g1 + q(g1 – g0))

2 and 
VD = p2q2(g2 + g0 – 2g1)

2. Note that these formulas are analogous to
the continuous case except that the displacement t is now replaced
by the GRR g2.

The measures described above for effects of single loci need to
be considered in the context of their genetic and/or environmental
background. The gaussian model provides the simplest context
whereby all other genetic factors are assumed to have small and
additive effects, and the environment is also assumed to be gaussian
and additive. In this case, in addition to the components of genetic
variance VA(L) and VD(L) defined for locus L, we have the components
of residual genetic variance VA(R) and VD(R), which are the additive
and dominance variance summed across all other loci, with VG(R) =
VA(R) = VD(R). The non-genetic component is assumed to have
variance VE.

From the perspective of biometrical genetics, epistasis refers to
non-additive interactions between gene effects (much as dominance
refers to non-additive effects between alleles at a single locus). Thus,
the genetic variance underlying a trait can include sources of variance
involving interactive effects among any number of loci, and these are
termed epistatic variance components. Often, these are segregated
into terms based on the number of loci involved in the interaction (for
example, two, three or four loci)44.

Box 1
Measuring gene effects
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biometrical genetics, these are loci with very high displacement 
(Fig. 1). The observed phenotype corresponds precisely to the under-
lying genotype with little if any misclassification. The robustness of
linkage analysis applied to mendelian traits can be seen by its historic
low false-positive rate12 when the stringent lod-score threshold of 3
suggested by Morton13 is used (corresponding to a P value of 10–3 for a
sequential test or 10–4 for a fixed sample-size test14). As I will discuss
later, this conclusion is true only for the study of mendelian traits.
Genetic heterogeneity in mendelian disease
An important issue in the study of mendelian disease is the 
phenomenon of genetic heterogeneity, whereby distinct mutations at
the same locus (allelic heterogeneity) or different loci (non-allelic
heterogeneity) can cause the same, indistinguishable phenotype.
Non-allelic genetic heterogeneity is a form of multi-locus model,
wherein the predisposing alleles at each locus are typically rare and
independently capable of producing disease. By contrast, common
predisposing alleles often lead to epistasis or interaction effects
among loci (Fig. 2). In linkage analysis, allelic heterogeneity does not
cause a problem because all families (including those with different
mutations) will show linkage to the same chromosomal region. 
In fact, allelic heterogeneity also provides the strongest evidence 
for a causal relationship between a cloned gene and disease 
phenotype. Statistically, it is extraordinarily unlikely to find several
different mutations at the same locus in unrelated families with the
same disease.

Non-allelic heterogeneity can cause a problem in linkage analysis,
depending on its extent. In the extreme situation that any single gene
accounts for a small proportion of segregating families, very large

families would be required to obtain robust linkage evidence, and
positional cloning would still be difficult. But for mendelian disease
this has rarely, if ever, been the case. More typically, when non-allelic
heterogeneity exists, it involves only a few distinct loci; this degree of
heterogeneity usually is not a serious impediment either to linkage
analysis or positional cloning, essentially because the relationship
between phenotype and genotype within families remains strong.

Another important issue relating to mutational heterogeneity is
the population under study. For mendelian disease, endogamous
population isolates with a limited number of founders tend to have
less mutational heterogeneity and an increased frequency of
founder effects, which makes them particularly useful in studies of
positional cloning. When most affected individuals in a population
carry a mutation derived from a single ancestor, they effectively cre-
ate a single large extended pedigree, although most of the distant
relationships are missing. Historic recombination events around
the disease mutation can still be inferred, however, by examining the
extent of DNA shared on present-day disease chromosomes. This
approach, referred to as linkage disequilibrium analysis, has been
highly effective in leading to the cloning of numerous disease genes.

The challenge of non-mendelian inheritance
As noted above, linkage analysis and positional cloning have had a
remarkable track record in leading to the identification of the genes
for many mendelian diseases, all within the time span of the past two
decades. Several of these genes account for an uncommon subset of
generally more common disorders such as breast cancer (BRCA-1
and -2), colon cancer (familial adenomatous polyposis (FAP) and
hereditary non-polyposis colorectal cancer (HNPCC)),
Alzheimer’s disease (b-amyloid precursor protein (APP) and 
presenilin-1 and -2) and diabetes (maturity-onset diabetes of youth
(MODY)-1, -2 and -3). These successes have generated a strong
sense of optimism in the genetics community that the same
approach holds great promise for identifying genes for a range of
common, familial disorders, including those without clear
mendelian inheritance patterns. But so far the promise has largely
been unfulfilled, as numerous such diseases have proven refractive
to positional cloning.

The likely explanation for this is related to the century-old debate
between Mendelists and biometricists. The gene mutations studied
by Mendel, and those more recently discovered by positional
cloning, are those with large effect and strong genotype–phenotype
correlations. They are effectively the ‘low-hanging fruit’ that are 
easy to harvest. Now, however, we are left with the great majority of
the fruit at the top of the tree with no obvious way to reach it. In
genetics terms, these are the numerous genes of smaller effect that
are likely to underlie most common, familial traits and diseases in
humans — that is, the genes more closely related to the biometrical
view of the world. Of course, this sharp distinction is artificial, in
that in reality gene effects of all magnitudes exist and depend on the

Table 1 Allele sharing Y for ASPs by displacement t, gene frequency p, prevalence K and heritability H

K = 0.001 K = 0.01 K = 0.10

t p H1 H = 0.20 H = 0.50 H = 0.80 H = 0.20 H = 0.50 H = 0.80 H = 0.20 H = 0.50 H = 0.80

0.50 0.01 0.001 0.501 0.502 0.502 0.502 0.501 0.501 0.501 0.500 0.500

0.10 0.011 0.522 0.518 0.514 0.512 0.510 0.508 0.505 0.504 0.503

0.30 0.026 0.535 0.529 0.524 0.522 0.518 0.515 0.510 0.508 0.507

0.70 0.026 0.523 0.519 0.516 0.515 0.513 0.511 0.508 0.507 0.506

1.0 0.01 0.005 0.524 0.516 0.512 0.510 0.507 0.506 0.503 0.502 0.502

0.10 0.043 0.605 0.585 0.569 0.561 0.548 0.539 0.521 0.517 0.515

0.30 0.095 0.618 0.602 0.589 0.583 0.570 0.560 0.538 0.532 0.528

0.70 0.095 0.551 0.549 0.544 0.542 0.538 0.534 0.525 0.522 0.520

2.0 0.01 0.019 0.666 0.624 0.594 0.576 0.554 0.541 0.515 0.512 0.509

0.10 0.153 0.791 0.765 0.741 0.701 0.676 0.656 0.584 0.572 0.563

0.30 0.296 — 0.734 0.720 — 0.692 0.677 — 0.604 0.595

0.70 0.296 — 0.585 0.579 — 0.576 0.573 — 0.559 0.555
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Figure 3 Range of number of ASPs required to detect linkage as a function of allele
sharing.
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trait being studied, but it is also true that the larger the gene effect, the
less frequent it is likely to be.

The problem can be given a quantitative interpretation by 
reverting to the model presented above (Fig. 1, Box 1). For complex
diseases, linkage analysis is based on the sharing of alleles identical by
descent at a marker locus or loci by affected relatives. For pairs of
affected sibs, the most frequently used group, it is straightforward to
predict the increase in allele sharing for a fully informative marker at
or near the disease locus as a function of the genetic model (Box 2).

The observations in Box 2, Table 1 and Fig. 3 provide perspective
on results of linkage screens for numerous disorders over the past
decade. So far, all genes first identified by linkage analysis and 
subsequently positionally cloned are those with low allele frequency
and high displacement (that is, mendelian or near mendelian inheri-
tance). These include the genes listed above for breast cancer, colon
cancer, familial Alzheimer’s disease and diabetes. By contrast, no
genes with moderate or modest displacement, even for rare 
disorders, have been identified in this way. The literature is now
replete with linkage screens for an array of ‘complex’ disorders such
as schizophrenia, manic-depression, autism, asthma, type 1 and type
2 diabetes, multiple sclerosis and lupus, to name but a few. Although
many of these studies have reported significant linkage findings,
none has led to convincing replication. Typically, independent 
studies of the same disorder identify maximal evidence at different
chromosomal locations. In effect, linkage analysis, traditionally the
most reliable of genetic methods when applied to mendelian traits,
has proven to be much less reliable a tool for the study of 
non-mendelian diseases, with a disappointingly high false-positive
rate. The likely explanation is that the biometrical view is closer to
reality than the mendelian view for most human traits and diseases.

This does not necessarily mean that no genes underlying non-
mendelian traits can be located by linkage analysis. There are several
examples of common alleles that have sufficiently large displacement

to have been detected by linkage analysis. One example is the role of
HLA in type 1 diabetes, where allele sharing by affected sib pairs
(ASPs) has been estimated at about 73% (ref. 15). A second example
is the role of apolipoprotein E (ApoE) in late-onset Alzheimer’s 
disease, where the ASP allele sharing is estimated at about 60%. Other
examples probably exist but have yet to be identified, although the
number is likely to be few. Table 1 and Fig. 3 indicate that increasing
sample sizes may ultimately improve the odds, but there is clearly a
limit. In addition, studying more extreme (and less frequent) pheno-
types is helpful provided such cases are also genetically more
extreme. However, gene effects with displacements of less than 1
standard deviation (s.d.), which are likely to represent most effects,
will rarely be identified this way.

These comments apply equally to quantitative traits studied in
humans. Designs that select individuals with extreme phenotypes,
both concordant for high or low trait values and extremely discor-
dant for high and low trait values, tend to be the most powerful. But
again, only loci with high heritabilities or large displacements can be
readily identified by linkage analysis16,17.

Another question relates to whether larger families with 
many affected individuals would provide better power than smaller
families, such as sib pairs. The answer depends on the frequency of
the susceptibility allele. For high-frequency alleles, selection of dense
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Table 2 Typology of SNPs and their occurrence

Type Description Number (in thousands)

I Coding, non-synonymous, non-conservative 60–100

II Coding, non-synonymous, conservative 100–180

III Coding, synonymous 200–240

IV Non-coding, 5′ UTR 140

V Non-coding, 3′ UTR 300

VI Other non-coding ¤1,000

Computational details for calculating the expected allele sharing for
affected sibs have been given previously16. I assume the frequency of
the high-risk allele is p, the number of standard deviations between
homozygotes (displacement) is t, total heritability of liability is H,
heritability due to the tested locus is H1 (and hence residual
correlation between sibs is (H – H1)/2) and the population prevalence
of disease is K. Table 1 provides the expected allele sharing Y for a
pair of affected sibs as a function of the parameters p, t, H and K. 
(H1 is derived from p and t as H1 = p(1 – p)t2/(1 + p(1 – p)t2). As can 
be seen in Table 1, Y increases directly with t, inversely with K, and
inversely with H, but has a more complex relationship with p and H1.
When the displacement is 0.5, the increase in allele sharing is
uniformly minimal. When t = 1.0, the increase in allele sharing is 
again minimal for common traits (K = 10%), moderate for low-
frequency traits (K = 1%) when the allele frequency p lies between 
10 and 50% and total heritability is low (*50%), and sizeable for 
rare traits (K = 0.1%), especially with moderate allele frequencies
(10–50%) and low total heritability (*50%). When displacement is
large (2.0), excess allele sharing is high for infrequent and rare traits
with moderate allele frequencies (10–50%), but more modest for 
high allele frequencies (p = 70%). For common traits (K = 10%), 
the excess allele sharing is sizeable only for moderate allele
frequencies. Examination of the locus-specific heritability H1

shows a complex pattern. Rare alleles with large displacement 
create low heritabilities but high allele sharing (for example, p = 0.01, 
t = 2.0, H1 = 1.9%), whereas common alleles with large displacement
generate high heritabilities but lower allele sharing (for example, 
p = 0.70, t = 2.0, H1 = 29.6%). Thus, genes with low heritability 
may be identifiable if they are rare and have large displacement but

not if they are common with low displacement. Similarly, genes with
high heritability should be detectable unless the allele frequency is
high.

Further statistical insight can be obtained by examining expected
lod scores as a function of allele sharing Y for different sample sizes.
Here I assume N completely informative sib pairs, which gives 2N
informative identical-by-descent tallies. If the probability of allele
sharing is Y, then the probability of R alleles shared out of 2N is just 

1 2YR(1 – Y )2N–R. For R shared alleles the maximum lod score is:

Rlog10R + (2N – R)log10(2N – R) – 2Nlog10N

The expected maximum lod score (EMLS) is obtained by taking the
sum of lod scores weighted by their probability. The EMLS for sharing
values of Y ranging from 0.50 to 0.60 for N = 250, 500, 1,000 and
2,000 ASPs is given in Fig. 3. For a genome-wide search, a lod
threshold of 3.6 has been recommended47. As the figure shows, 250
fully informative sib pairs are sufficient to obtain a significant lod score
when Y à 0.60; 500 sib pairs can detect Y values à 56.5%; 1,000
sib pairs can detect values à 55%; and 2,000 sib pairs can detect Y
values à 53%. Comparison with Table 1 shows that genes with
displacement of 0.5 or less cannot be detected even with 2,000 sib
pairs. Genes with larger displacement (à1.0) should be detectable in
many circumstances with 1,000 sib pairs provided the disease is not
common (K   1%). Smaller samples (250 sib pairs) have the power to
detect genes only with large displacement (t à 2.0) or genes with
intermediate displacement (t = 1.0) with intermediate allele frequency
(10–50%) for a rare disease (K = 0.1%).
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Box 2
Linkage evidence as a function of genetic model
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families is likely to increase parental homozygosity at the disease
locus and reduce linkage evidence. On the other hand, for rare alleles
with large displacement, dense families are usually optimal, because
the probability for such a family to be segregating the allele is
increased, enhancing the linkage evidence. However, if genome
screens of extended pedigrees have been conducted without success,
it is reasonable to conclude that rare genes of large effect are unlikely
to exist for the trait studied.

Linkage analysis in model systems has actually been far more 
successful in locating loci with moderate effects for either quantita-
tive traits (quantitative trait loci or QTLs) or disease outcomes than
has linkage analysis in humans. There are several reasons for this: (1)
inbred strains are often used, which limit the number of loci involved
to those that differ between the two strains; (2) rare alleles with large
displacement can become fixed in inbred strains subjected to many
generations of positive selection; (3) by design, all parents (in an
intercross) or half the parents (in a backcross) are heterozygous and
thus informative for linkage; and (4) all offspring come from matings
of the same phase and thus can be combined into a single large group
for analysis. The lack of all of these features in studies of human 
linkage has probably led to reduced power, but at least some can be
addressed by alternate study designs. For example, reducing human
genetic variability (item (1) above) is not possible, although focus on
certain populations with reduced genetic variation might be 
beneficial and has been recommended18. As described above, rare
alleles with large displacement in humans can often be identified by
studying dense, extended pedigrees (item (2)). Items (3) and (4)
above are generally intractable in human linkage studies. The one 
situation when (3) and (4) apply in humans is when there is linkage
disequilibrium (that is, population association) between a marker
allele and trait allele. Indeed, when there is complete disequilibrium
(or where the trait and marker allele are the same), the human 
situation becomes directly analogous to the experimental, as 
individuals from different families can be combined into single
groups based on genotype. However, there is still an important 
difference. In the experimental situation, complete linkage disequi-
librium spans the entire length of a chromosome and diminishes only
by (1 – u) for a marker at recombination fraction u away from the trait
locus in a single experimental generation. In humans, the amount of
disequilibrium between a trait allele and marker allele depends on
trait allele homogeneity and is a function of the time since the allele
first arose and population demographic history over that time. 
Typically, disequilibrium spans very short chromosome segments
except for rare, recent mutations. Finally, it is important to note that,
despite the initial success and power of linkage analysis to locate trait
loci in model organisms, even in this case positional cloning of these
genes has remained a significant challenge.

Back to the future-candidate genes
The disappointing results from linkage studies coupled with a 
biometrical view of the world has led to the suggestion of alternative
approaches to tackling the genetics of non-mendelian diseases,
namely reversion to the study of candidate genes on a large scale19

or high-density genome scans that are dependent on linkage 
disequilibrium20. However, first it is useful to show directly the
greater power of detection of gene effects by direct-association (or
linkage-disequilibrium) analysis when the involved variant is in
hand as opposed to depending on linkage analysis without linkage
disequilibrium (Fig. 4). By using an analysis similar to one described
previously19, ASPs (for linkage) are compared with case–control
pairs (for association). Parameterizing the effect of the locus in terms
of genotype relative risk (g) and allele frequency (p), for high relative
risks (g à 4) and intermediate allele frequencies (p = 0.05–0.50) it is
realistic to expect linkage analysis to provide statistical evidence for
the location of a disease gene. However, for more modest relative risks
(g   2), linkage analysis will not provide such evidence except in
unrealistically large samples. By contrast, case–control association

studies, even using a stringent significance level (5 2 10–8), provide
adequate power for genes with relative risks as low as 1.5 
(with p = 0.10–0.70).
Random SNPs or coding SNPs?
The suggestion of genome-wide searches for gene effects using large-
scale testing of single nucleotide polymorphisms (SNPs), or perhaps
more appropriately simple nucleotide polymorphisms (which could
include short deletions and insertions and multinucleotide changes
as well as single nucleotide substitutions), has led to considerable 
discussion of the efficiency of different approaches (see review in this
issue by Roses, pages 857–865, for a discussion of SNPs). The original
suggestion of Risch and Merikangas19 was to study coding or promot-
er variants with potential functional significance. Collins et al.20

subsequently suggested that non-coding or evenly spaced SNPs with
high density could be used to track disease loci through linkage 
disequilibrium. The number of SNPs required for the latter strategy
has been the subject of debate, primarily because the extent of linkage
disequilibrium in the human genome has not been well studied on a
large scale. As opposed to recombination — a biological phenome-
non already measured extensively in humans — linkage disequilibri-
um is a property of populations, and thus depends heavily on their
demographic and social histories. Population isolates such as Finns,
Ashkenazi Jews and Mennonites have been shown to demonstrate
extensive linkage disequilibrium (up to several percent recombina-
tion) around rare disease mutations. The degree to which the same
will be true for higher-frequency variants is uncertain, although as a
general rule the disequilibrium is likely to decline with increasing
allele frequency owing to an older coalescence time. 

Some researchers have argued that as many as 500,000 evenly
spaced SNPs may be required to detect linkage disequilibrium of 
sufficient magnitude for mapping purposes21, even in population
isolates, whereas others have argued that founder populations, 
especially those that have remained small over an extended time 
period, such as the Saami of Scandinavia22 or isolated Sardinian 
populations23, would require far fewer SNPs. Although such popula-
tions should improve the chances for detecting rare disease alleles
(say less than 5% in frequency), owing to greater linkage disequilibri-
um per base pair, the same is unlikely to be the case for common 
alleles (greater than 5% in frequency)24. Furthermore, the power of
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Figure 4 Comparison of linkage (dashed lines) with association analysis (solid lines)
for detecting genetic effects. Linkage is based on ASPs with a completely linked and
informative marker. Association is based on case–control pairs testing the causative
locus. A multiplicative model is assumed, where the genotype relative risk (GRR or g)
of the high-risk homozygote is the square of the value of g for the heterozygote, which
is given in the figure. Loci with g ¤ 1.5 can be detected by association analysis, but 
g ¤ 4.0 is needed to detect a locus by linkage analysis.
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association tests diminishes significantly with decrease in linkage
disequilibrium, and as a result of discordance between the frequen-
cies of disease and marker alleles7,25,26. Although increasing marker
density greatly enhances the chance of including a marker in strong
linkage disequilibrium with the disease allele, the same is not true for
similarity of allele frequencies because correlations between SNP
allele frequencies do not increase inversely with distance between
SNPs27. Another complication is that, in contrast to linkage analysis, a
negative linkage-disequilibrium result in a particular genomic
region does not exclude a significant gene effect in that region. It may
be that the SNPs used there are in modest or no disequilibrium with
the disease allele, and/or the allele frequencies are divergent. Thus, it
seems that in a genome-wide random SNP approach, even at high
density, many disease-causing genes would be missed.

Several arguments favour using SNPs in coding and promoter
regions rather than random SNPs. First, it is these variants, a priori,
that are most likely to be of functional significance and to influence
directly the traits under study. In fact, these are the variants to which
random SNP searches are likely to lead. Second, even if not the
causative variant in a gene, such SNPs are as likely (or more likely) to
be in linkage disequilibrium with the causative allele as are randomly
placed SNPs.
Typology of SNPs
If large-scale SNP searches are to become a useful tool for dissecting
complex genetic disease, experimental efficiencies need to be
brought to bear on the problem. One major efficiency that is possible
with association studies but not linkage analysis is DNA pooling,
where allele frequencies are examined and compared in a small 
number of pools rather than a large number of individuals7,28–30.
However, it will still be useful to reduce the number of SNPs studied
in a systematic way. Although some have argued for an SNP every n
kilobases (where n is between 3 and 100), an alternative approach is to
prioritize SNPs based on likely functional significance. The past two
decades of study of mendelian traits has provided a rational basis on

which to classify genomic variation (for example, based on the type
and frequency of mutations observed for mendelian traits). Two
recent studies that have scanned genes for polymorphism31,32 also
enable estimation of the number of such SNPs in the human genome.
The typology and estimated number of SNPs is provided in Table 2.
Coding SNPs (or cSNPs) have been denoted as types I to III depend-
ing on whether they lead to non-conservative alterations (type I),
conservative amino-acid substitutions (type II), or are synonymous
(type III). Non-coding SNPs have been separated into 5′ untranslat-
ed region (UTR) (type IV), 3′ UTR (type V) and other non-coding
SNPs (type VI). Ultimately, it may be useful to further fragment 
the last category into subcategories such as exon/intron boundaries
and so on.

If we are limited in the number of SNPs to test, it would seem
appropriate to give highest priority to type I SNPs (estimated to 
number between 60,000 and 100,000), as these types of changes are
most often associated with functional effects and phenotypic 
outcomes. In support of this argument, both Cargill et al.31 and
Halushka et al.32 found a relative deficiency of SNPs altering 
amino-acid sequence as compared with synonymous coding or 
non-coding SNPs, which is consistent with the former having 
functional and phenotypic significance (and hence subject to selec-
tion). Similarly, Halushka et al.32 found a relative deficit of allelic
diversity in the 5′ UTR region of genes, suggesting that type IV SNPs
should receive priority (an additional 140,000 SNPs). The same
would be true for any variants creating or deleting a splice site.

Another important observation made by Cargill et al.31 and
Halushka et al.32 is that type I and II SNPs have lower heterozygosity
than other types of SNPs, presumably as a result of selection pressure.
For example, Cargill et al.31 find that about one-quarter of type I and
type II SNPs have minor allele frequencies greater than 15%, whereas
nearly 60% have minor allele frequencies less than 5%. As discussed
below, this observation is important in designing studies to optimize
discovery of associations between genes and disease.
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Additive variance. The component of genetic variance due to the
additive effects of alleles segregating in the population.

Coalescence time. Number of generations to the most recent
common ancestor carrying a mutation or DNA variant currently
present in a given population.

Displacement. The difference in s.d. between mean values for
individuals with alternative homozygous genotypes at a given locus.

Dominance variance. The component of genetic variance due to
non-additive effects of alleles at the same locus.

Epistasis. Genetic variance due to non-additive effects of alleles at
distinct loci.

Founder effect. Coalescence of a mutation or DNA variant in a given
population to one of the original population founders or his/her
descendant.

Genetic heterogeneity. Distinct alleles at the same or different loci
that give rise independently to the same genetic disease.

Genotype relative risk (GRR). The risk of disease for one genotype
at a locus versus another.

Heritability. The proportion of population variance in a trait
attributable to segregation of a gene or genes. Can be 

locus-specific or for all loci combined.

Identity by descent. Alleles that trace back to a shared ancestor.
For sibs, refers to inheritance of the same allele from a given parent.

Linkage disequilibrium. Two alleles at different loci that occur
together within an individual more often than would be predicted by
random chance. Also called population allelic association.

Mendelian. A gene with a large displacement, giving rise to a (near)
one-to-one correspondence between genotype and phenotype.

Microsatellite. A DNA variant due to tandem repetition of a short
DNA sequence (usually two to four nucleotides).

Non-mendelian. A gene without large displacement, giving rise to
significant overlap of genotype distributions and lack of one-to-one
correspondence between genotype and phenotype.

Restriction-fragment length polymorphism (RFLP). DNA
sequence variability leading to cutting or not by a restriction enzyme.
Visualized by different patterns of fragment sizes.

Sibling relative risk. The disease risk for a sibling of an affected
individual compared to the disease risk in the general population.

Single nucleotide polymorphism (SNP). DNA sequence variation
due to change in a single nucleotide.

Box 3
Glossary
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The typology given above (and in Table 2) is based simply on
change in DNA sequence. However, advances in functional
genomics/proteomics can also bear on this problem. Discoveries
relating to time and distribution of expression of genes, for example
deriving from microarray studies, can influence our suspicion of
their involvement in various disease processes. It is even conceivable
that results of expression studies can be correlated with genotypic
variation that exists at a locus. Thus, Table 2 could ultimately be
refined to incorporate such information and influence the prioritiza-
tion of SNPs for phenotype analyses.
Optimal study designs
The recent resurgence of association studies using candidate genes
has led to much discussion about design issues. The simplest such
design is the epidemiological case–control study, contrasting allele
frequencies in cases versus controls. As is true for case–control 
studies generally, confounding is a problem for inferring a causal
relationship between a disease and measured risk factor. One
approach to deal with confounding is the matched case–control
design, where individual controls are matched to cases on potential
confounding factors (for example, age and sex) and the matched
pairs are then examined individually for the risk factor to see if it
occurs more frequently in the case than in its matched control.

From the genetics perspective, the most serious potential 
confounder is ethnicity. If cases and controls are not ethnically com-
parable, then differences in allele frequency will emerge at all loci
that differentiate these groups whether the alleles are causally related
to disease or not (this phenomenon is sometimes known as stratifi-
cation artefact). One solution to this problem is to use a matched
case–control design, where controls are ethnically matched to cases.
This can in theory be accomplished by focusing on homogenous and
randomly mating populations, where cases and controls will 
presumably be ethnically comparable. However, such populations
may be more of a theoretical ideal than a reality, as non-random
mating patterns exist in nearly all groups. Nonetheless, association
studies in Finland are less likely to be subject to confounding 
problems than in heterogeneous North American populations.

Another solution to this problem involves the use of relatives as
controls for cases. The first such described design proposed the use of
unaffected sibs as controls2,3, and this design has recently seen a resur-
gence of interest4–8. Designs involving parents as controls have also
been proposed33–36. Among these, perhaps the test most similar in
spirit to the epidemiological matched case–control analysis is the
transmission disequilibrium test35, in which an allele transmitted by a
parent to an affected child is matched to the other allele not transmit-
ted from the same parent; MacNemar’s chi-square test of discordance
is then applied to the resulting pairs34 (Fig. 5). The two alleles carried
by a parent are of necessity ethnically matched, and thus the stratifi-
cation artefact is eliminated. The same applies to sib controls, whose
genotypes are ethnically matched to the cases.

But a significant result from a design using parent or sib controls
still does not imply a causal relationship between the tested allele and
the disease outcome, because linkage disequilibrium with a linked
locus (but not an unlinked locus) will also create a positive result.
Nevertheless, it does at least indicate a significant gene effect nearby,
if not the tested allele itself. The main drawback of using 
parents or sibs as controls is either unavailability (for example, with
parents for a late-onset disease) and loss of power, especially with sibs
(as described below).

Whereas the simple case–control design is the mainstay of 
epidemiology, other family-based approaches are available that are
more efficient. In particular, sampling multiplex families, where
more than a single individual is affected, can be significantly more
efficient than sampling singletons. The increase in efficiency is also a
function of the disease allele frequency, and is most pronounced for
rarer alleles. Using previously described methods7,37, I have calculat-
ed the number of families and total individuals required to detect a
gene effect with g = 4.0 (for the homozygote) and g = 2.0 (for 
the heterozygote), assuming a significance level a = 5 2 10–8 and
power 1 – b = 80%. I evaluate two disease allele frequencies, 5% and
20%, and consider designs including one, two or three affected sibs,
where the (two) control individuals are either the parents of the 
sibship, unaffected sibs, or unrelated.

For all designs except sibs, the efficiency is approximately the
same when affected and control samples are pooled. For sibs, greater 
efficiency is possible with individual genotyping37, so those cases
(pooled versus not pooled) are evaluated separately. The results are
provided in Table 3. Rarer alleles (0.05 versus 0.20) are always more
difficult to detect, but the number of subjects required can be
reduced substantially by increasing the number affected in the 
sibship. Using unaffected sibs as controls leads to two to five times
the required sample size as using unrelated subjects, depending on
the number of affected sibs. Using parents leads to a 40–80%
increase, again depending on number of affected sibs. The main
conclusion is that if disease-susceptibility alleles are typically low
frequency (say   20%), multiplex sibships are particularly advanta-
geous; they are also advantageous for more frequent alleles, but the
relative advantage is less7.

An important remaining question is whether to use parents or
sibs as controls and suffer the loss in power (especially with sibs), or
use unrelated controls and risk loss of robustness. Population strat-
ification has been invoked numerous times as the cause for an
observed high false-positive rate in association studies using candi-
date genes, yet it has rarely been demonstrated as the culprit38. 
More likely, it is the lack of a stringent significance level used in 
such studies that is the problem. If one assumes the prior probabili-
ty for any particular gene variant to be associated with a disease 
outcome to be low, most reported significant associations will be
false positives.
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Table 3 Sample sizes for candidate-gene association studies for different designs

Design p = 0.05 p = 0.20

No. affected sibs Two controls No. families No. subjects No. families No. subjects

1 Unrelated 872 2,616 300 900

1 Parents 1,251 3,753 417 1,251

1 Sibs (NP) 1,715 5,145 604 1,812

1 Sibs (P) 2,032 6,096 655 1,965

2 Unrelated 265 1,060 102 408

2 Parents 448 1,792 173 692

2 Sibs (NP) 642 2,568 286 1,144

2 Sibs (P) 992 3,968 361 1,444

3 Unrelated 121 605 52 260

3 Parents 218 1,090 101 505

3 Sibs (NP) 314 1,570 177 885

3 Sibs (P) 605 3,025 258 1,290

NP, not pooled; P, pooled.

© 2000 Macmillan Magazines Ltd



An attractive alternative to using family-based controls is to use
random or unlinked genetic markers typed in the same cases and
controls to determine the extent of possible confounding by 
ethnicity39. In fact, the same markers can also be used to assess the 
significance of any putative association40, or even used to adjust any
candidate gene analysis for potential confounding by stratified analy-
sis. Given the proposals for large-scale genotyping, it seems most
likely that this approach will ultimately be most efficient.
Population variation and replication
As discussed above, rare variants (*5% frequency) are most likely to
be population specific. In some cases, they may be recent in origin
and hence specific to a single founder population or less recent and
generally found in one major ethnic group (for example,
haemochromatosis mutation C282Y found only in Caucasians41).
These are the variants that are most readily detected by a random SNP
linkage-disequilibrium approach, but at the same time potentially
least replicable by studying distinct populations. In this case it would
be worthwhile to examine the same gene in other populations 
(or even the same population) for other functional variants that are
associated with a similar phenotypic endpoint. Discovery of such
alleles provides the strongest evidence for a causal link between the
gene and the trait, as is the case with family-specific mutations in
mendelian diseases.

Common alleles (¤10% frequency) are more likely to be found
globally. If so, a causal association between a candidate SNP and
trait outcome should be reproducible in many ethnically diverse
populations. However, whereas pan-ethnic replicability provides
support for a causal relationship, its absence does not necessarily
negate it. It is well known that the same mutation can cause a major
disease phenotype in one strain of mouse but no phenotype in a
genetically distinct strain. Thus, background factors (genetic and
otherwise) differentiating populations can modify the expression
of a gene and lead to different levels of association. For example, 
this seems to be the case for ApoE and Alzheimer’s disease, 
where the association exists pan-ethnically but is strongest in 
Caucasians and Asians, and weaker in Hispanics and African 
Americans42.

Another advantage to having an ethnically diverse sample of
individuals/families is that patterns of linkage disequilibrium may
differ ethnically, helping to resolve causal from non-causal 
relationships. While populations with high linkage disequilibrium
may be useful for initial detection of SNP associations, several 
different SNPs may be in strong or complete disequilibrium. Popu-
lations with lower levels of disequilibrium can help resolve which
SNP effect is primary. Generally, Africans appear to have the lowest
levels of linkage disequilibrium and hence are likely to be most 
useful for such analyses. An example is provided by the association
of HLA and narcolepsy. In Caucasian and Asian populations, the
alleles DR2 and DQb-0602 are equally associated with the disease
(and in complete disequilibrium with each other), whereas in

Africans there is incomplete disequilibrium between them and
DQb-0602 shows the primary effect43.

Conclusions
As we move into a new millennium, the association of computational
and molecular technological developments, including the sequenc-
ing of the human genome, is opening up new and unprecedented
opportunities for genetics research. It is appropriate to reflect on the
accomplishments of the past century and where the new technology
is likely to lead us.

As I have indicated, much of the current debate in human genet-
ics regarding approaches to the study of complex diseases can be
reflected back onto the century-long debate between the Mendelist
view and the biometricist view of the world. Much of the difference
in views can be attributed to the traits chosen for study, with
Mendelists focusing on those dominated by single-gene effects and
the biometricists focusing on continuous, ‘polygenic’ variation. 
For most common diseases facing humanity, it is likely that the 
biometrical view is more apt.

The past two decades have witnessed numerous spectacular
applications of positional cloning to identify mendelian human 
disease genes. But the fact is that the same approach is proving limited
in identifying the multitude of genes underlying the more common,
complex disorders. Even high-density genome scans with evenly
spaced SNPs, depending on linkage disequilibrium, are simply an
extension of the same reverse-genetics approach.

At this turn of the millennium, with the completion of the human
genome project now in sight, we need to consider the full impact of
having the entire human DNA sequence. Although the traditional
reverse-genetics approaches (linkage and linkage-disequilibrium
analysis) may identify a few of the genetic susceptibility agents we
seek, I believe a far greater yield will occur by rethinking this problem
from a forward-genetics perspective. Identifying all (or most) of the
genes in the human genome, as well as identifying and cataloguing
the functional variation lying within them, which occurs naturally in
the human population, provides opportunities for studying the
impact of those variants on phenotypic outcomes of interest. 
Functional genomics technology involving microarrays and 
proteomics will provide added insights regarding gene function on
the cellular level, improving our ability to predict phenotypic effects
of genes at the organismic level. Nevertheless, efficient study designs
will still be required, and multiplex families, the mainstay of linkage-
based studies, will still be optimal. However, instead of family-based
controls, unrelated controls will emerge as a more powerful and 
efficient approach (especially for analyses based on pooled DNA
samples), and robustness will be maintained by studying a large
number of independent SNPs. Sampling families of varying ethnicity
will also be advantageous from the perspective of enhancing evidence
of causality as well as identifying genetic and/or environmental 
modifying factors.
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Family-based controls Unrelated control

Aa Aa
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Case alleles Control alleles

Parents: aa
Sib: Aa

Unrelated: aa

Figure 5 Example of candidate-gene association analysis using
different control groups. The case has two A alleles. The parental
control (alleles not transmitted to the affected child) is two a
alleles. Analysing the frequency of A among transmitted versus
non-transmitted alleles by a chi-square test gives rise to the
haplotype relative risk test32,33. Pairing each parent’s transmitted
allele with the non-transmitted allele and comparing the
frequency of the two types of discordant pairs (A transmitted, 
a non-transmitted, compared with a transmitted, 
A non-transmitted) by MacNemar’s chi-square test gives rise 
to the transmission disequilibrium test33,34. The sib control 
alleles are A and a, and comparison with the affected sib 
gives rise to sibship-based tests3–8. The unrelated control (two a
alleles) gives rise to a traditional matched case–control analysis.
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Despite future developments, it will still be important to view the
study of human disease from an epidemiological perspective. Both
human genetics and epidemiology are observational as opposed to
experimental sciences, and we will never be able to exert the degree of
scientific control in studies of human disease that experimentalists
can with model systems. Furthermore, we must not lose sight of the
numerous non-genetic influences that influence disease risk, and
how they interact with host (that is, genetic) factors. ■■
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