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(the RECOMBINATION FRACTION) is significantly less than
50%  a small recombination fraction is indicative of a
short physical distance between the two loci investi-
gated. One of the loci might be a Mendelian disease
locus with unknown position in the genome, whereas
the other locus is a genetic marker with known position.
Therefore, significant linkage allows the approximate
localization of the disease locus in the vicinity of the
marker locus. If the result is inconclusive, the researcher
will simply perform more crosses, so there is no need for
sophisticated statistics in this case.

In human genetics, however, investigators are plagued
with factors that cannot be controlled by experimental
design, such as missing observations, small family size,
and various other problems that render data analysis
more complicated than for experimental animals.
However, the principle is the same — a small estimated
recombination fraction between disease and marker loci
provides an approximate localization of the disease
gene. In the case of complex traits, difficulties are greatly
compounded by the fact that an individual can be
affected because of the effects of susceptibility genes that
lie on different chromosomes. Disease might occur only
if a particular combination (pattern) of genotypes is
present at different susceptibility loci, and not as a result
of a single disease gene alone. So, each single susceptibil-
ity gene will have only a small effect and cannot easily be
detected by methods that search for one gene at a time.

‘‘It was the math that gave us the edge,

not the machines’’.

Craig Venter (REF. 1)

Mendelian disease traits are generally rare and tend to
occur in populations at frequencies of less than 0.05%.
Common heritable disease (or susceptibility) traits,
such as diabetes, schizophrenia and obesity, represent a
more severe burden on human populations, with fre-
quencies of 1% or more. Although these traits cluster
among relatives, they do not show Mendelian modes of
transmission and are generally thought to be under the
influence of multiple, and possibly interacting, genes.
Localizing such genes is of high importance for phar-
maceutical companies because the genes that contribute
to these traits could identify drug targets that are diffi-
cult to find otherwise. Adverse drug events also tend to
have a strong genetic basis. For these reasons, statistical
methodological research has shifted from finding
genes that underlie Mendelian disorders to those that
contribute to complex traits.

In many experimental organisms, finding genetic
linkage between two neighbouring loci amounts to
counting a sufficient number of suitable offspring.
For example, the so-called F2 generation in a double-
BACKCROSS allows researchers to count recombinant and
non-recombinant animals. Two loci are said to be genet-
ically linked if the proportion of recombinant animals
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RECOMBINATION FRACTION

The proportion of offspring that
receives a recombinant
haplotype from a parent, or the
probability that recombination
occurs between two loci.

BACKCROSS

Originally, backcross referred to
the mating of an offspring with
one of its parents, in which the
offspring is heterozygous, with
the parent being homozygous
for one of the alleles in the
offspring's genotype. Nowadays,
backcross simply refers to a
mating between individuals with
those two genotypes.
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of other disease loci that might exist elsewhere in the
genome. To avoid confusion with this classical technique,
we use multi-locus methods to refer to approaches that
are specifically designed to find multiple disease loci, pos-
sibly on different chromosomes. It is these methods that
are reviewed here. Although analogous approaches in
experimental organisms have recently been reviewed3,
our outline is the first review of the mathematical aspects
of multi-locus approaches in human genetics.

Historical background
In 1902, Garrod4 interpreted the clustering of abnor-
malities in sibships as the likely result of Mendelian
inheritance. After successful gene-mapping experi-
ments in the fruitfly by Morgan and Sturtevant, early
approaches to localizing a human-disease locus, based
on its linkage to a genetic marker locus, were carried out
by tedious LIKELIHOOD ANALYSES (BOX 1) of X-linked traits.
The introduction of LOD SCORES and their tabulation for
two-generation human families of various sizes and
parental phenotypes5 opened this field to a wide spec-
trum of researchers. The formulation of likelihoods for
large pedigrees6, and the development of computer
algorithms for the automated calculation of likelihoods
and lod scores7, set the stage for worldwide efforts to
localize genes that are responsible for Mendelian dis-
orders. Among the first genes to be found using this
approach were those that are mutated in familial hyper-
cholesterolaemia8,9, Huntington’s disease10 and cystic
fibrosis11. Once the loci are localized, it still typically takes
several years for the molecular characterization (identifi-
cation) of the gene to be accomplished. Elucidating the
mechanisms of disease, and perhaps the cures, generally
still takes many years of additional research.

Association studies
Gene-mapping studies are based on the random occur-
rence of cross-overs in meiosis and are of two types:
genetic linkage analysis and association analysis. Here,
we focus on the essence of association analysis, as the
relationship between these two techniques has recently
been reviewed12.

Association studies rely on the fact that alleles at loci
that surround a disease locus tend to segregate together.
In the absence of crossing-over, the disease chromo-
some (the chromosome on which the mutated disease
locus lies), and all the alleles at other loci that happen to
be on that chromosome, would be transmitted as a
block (known as a haplotype) to the descendants of the
given individual. However, owing to the occurrence of
crossing-over, the region around the mutated allele that
will be transmitted as a block to the next generation
tends to shrink in successive generations13. FIGURE 1

shows the length of the region around the disease locus
where no crossing-over is expected to occur (assuming
that cross-overs occur independently of each other) for
a rare recessive disease that is caused by a mutation at a
single locus14. For example, for a disease-causing muta-
tion that occurs in the middle of a chromosome that is
200 cM long (~200 Mb), the region around the disease
locus that will be unaffected by crossing-over would be

Such complexity might seem daunting, but statisticians
have been developing appropriate analysis methods that
can capture contributions from multiple susceptibility
loci and provide evidence for the localization of disease
genes on human chromosomes. Such localizations are
only approximate and accurate to within several
megabases, but they represent a starting point and guide
future molecular-genetic research.

Here, we discuss the specific properties and difficulties
that statisticians face when dealing with complex human
traits. We do not discuss haplotype analyses  that is,
investigations of haplotype frequencies and their differ-
ences in cases and controls. These methods (including
specialized approaches such as cladistic analysis2) deserve
a separate treatise and represent important multi-locus
alternatives to the approaches discussed below.

In general, the term ‘multipoint analysis’ refers to the
joint analysis of multiple neighbouring marker loci, with
the purpose of localizing one disease locus independently
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Figure 1 | Expected decay of linkage disequilibrium around a recessive disease locus in
successive generations after an initial mutation. Predicted length in centimorgans (cMs) of the
region around a disease locus in which no crossover is expected to occur within the given number
of generations after the initial occurrence of a disease mutation. A chromosome length of 200 cM is
assumed and the disease is rare and recessive. Reproduced with permission from REF. 14.

Box 1 | Likelihood and lod score

For family data with partially missing observations,
it is not possible or is at least very inefficient to
estimate recombination fractions by simple
inspection of the data. However, it is still possible 
to compute the likelihood  that is, the probability
of the occurrence (or the plausibility)  of the
observed data when specific values of parameters
such as the recombination fraction are assumed.
Such a parameter could be estimated by trial and
error  that is, assume many different parameter
values and inspect the likelihoods that result from
them. The parameter value that makes the data most
plausible (with the largest likelihood) is taken to 
be the best estimate. The associated likelihood ratio
(the largest likelihood divided by the likelihood when
the recombination fraction is 50%) is known as the
odds for linkage and its logarithm is known as the
(maximum) lod score.

LIKELIHOOD ANALYSES 

A statistical method that
calculates the probability of the
observed data under varying
hypotheses, to estimate model
parameters that best explain the
observed data and determine the
relative strengths of alternative
hypotheses.

LOD SCORE

The logarithm of the likelihood
ratio (odds) for genetic linkage
versus no linkage at a given value
of the recombination fraction.
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that the second step can also be accomplished using
classical statistical analysis methods. Several approaches
discussed below focus on step one, whereas others
combine both steps one and two.

Early approaches. Attempts to analyse more than one
disease locus at a time go back at least 70 years. In the
first instance, analysis considered two-locus (also
known as digenic) inheritance19. For example, Hogben20

postulated that pairs of unlinked loci caused disease
and, for given parental phenotypes, analytically derived
the expected proportion of affected offspring, which he
then compared with the corresponding proportion
observed in specific diseases. Although these efforts
were more directed towards elucidating the mode of
inheritance than gene mapping, they were among the
first to consider multiple disease loci simultaneously.

More recently, MacLean et al.21 argued that two loci,
the joint action of which confers susceptibility to dis-
ease, should be expected to show correlated lod scores,
which is not expected of loci that are not associated with
disease. So, these researchers proposed an analysis pro-
cedure that incorporated the correlation between maxi-
mum lod scores obtained at different genomic regions;
however, the statistical properties of this procedure
remain unknown. A subsequent refinement of this
approach has successfully shown that two loci interact
to increase susceptibility to diabetes22.

These ideas led to additional formal developments of
analysis methods that involved more than one locus at a
time. For example, approaches for the simultaneous
linkage analysis of two susceptibility loci were proposed
and have been shown to be generally more powerful
than the analysis of one locus at a time23–25. Whether this
also holds on a genome-wide basis was investigated in a
careful theoretical analysis by Dupuis and colleagues26.
They assumed the existence of two unlinked disease loci
with different modes of inheritance and evaluated three
approaches to localizing one or both of the two suscep-
tibility loci by linkage analysis. First, they tested single-
locus search, which represents the traditional approach
of analysing one marker at a time and looking for the
most significant results. Second, they tested simultane-
ous search, which looks at all possible pairs of markers
and picks those with the strongest effects on linkage.
Finally, they tested conditional search, which is based on
a clearly significant linkage result and, given that result,
looks at all other loci one by one. The conditional search
differs from the single-locus search in that, in the for-
mer, the finding of a new locus given an established
locus can exploit interactions between these two suscep-
tibility loci27.

An important conclusion from the comparison of
these three genome-wide search strategies was that the
power of each strategy depends on how susceptibility
loci interact to cause disease. To successfully localize at
least one disease locus over a broad range of conditions,
neither a single-locus search nor a simultaneous search
seemed to be strongly preferred. Investigating all possi-
ble pairs of loci leads to a greatly increased number of
statistical tests, which is referred to as a multiple-testing

reduced to 1 cM after 200 generations. Each locus
within this region that receives a copy of the ancestral
mutation will tend to inherit the same set of alleles
(haplotype), coupled with the ancestral mutation.
Individuals who do not inherit the disease mutation are
expected to show a random assortment of alleles at the
various loci throughout the given chromosome. If a
genetic trait is at least partly due to the particular muta-
tion considered here, we expect that individuals affected
with the trait tend to share a different set of alleles at loci
around the mutated locus than do unaffected individuals.
This is referred to as linkage disequilibrium (LD). If a
genetic marker is in LD with a disease susceptibility
locus, it would be expected that genotype and allele fre-
quencies at the marker loci will differ between case and
control individuals. Investigations of such differences
are known as association studies.

Recurring disease and marker mutations will impact
negatively on the expected extent of LD between marker
and disease loci. By contrast to microsatellite markers, a
particular set of markers, the single-nucleotide poly-
morphisms (SNPs), is known to mutate very rarely,
which renders them extremely useful for association
studies. Importantly, SNPs are very abundant — several
million of them are known, whereas the number of
useful microsatellites is in the order of 1,000. In many
studies, the effects of genetic linkage can be detected
over distances of 10 to 20 Mb. On the other hand,
investigations of association for pairs of SNPs have
shown that moderately strong LD in a United States
population of north-European descent typically
extends only 60 kb from a SNP15. So, it might be
expected that the current range of LD around a disease
locus is of a similar magnitude, which, given the size of
the genome, requires 10,000s of SNPs for genome-wide
association studies16.

Multi-locus methods
As there are many susceptibility genes, each gene by
itself might have a rather small effect. Therefore, investi-
gating associations between marker genotypes and dis-
ease phenotypes for only one marker at a time without
considering other (unlinked) markers will probably
capture only a small proportion of the total combined
effect of all disease genes. It is for this reason that statisti-
cians are developing analysis methods that allow the
joint analysis of multiple SNPs in their associations to
multiple disease loci.

The number of genetic marker loci (input variables)
is potentially very large and, when combined with the
generally much smaller number of observations, creates
a statistical problem that has been referred to as the ‘curse
of dimensionality’17, as it precludes a classical joint analy-
sis of all variables. In genomic screens, this problem has
traditionally been circumvented by the analysis of one
input variable at a time. To do justice to multigenic
complex traits, it has been proposed that a two-step
approach should be used18. First, a small number of
important or influential markers is selected. Second,
based on the selected subset, interactions between
markers and dependent variables are modelled. Note
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increased risk for this eye disease28. In a comparison of
adopted and non-adopted children at varying risk 
of speech disorders, logistic-regression analysis showed
that parental status with regard to speech disorder was
the best predictor of whether offspring were affected,
whereas other potential risk factors, such as the child’s
IQ, were not significantly associated with speech phe-
notype29. However, the logistic regression approach suf-
fers from several shortcomings. For example, if the
number of marker loci is larger than the number of
observations, this method fails completely. This obsta-
cle might be overcome with STEPWISE REGRESSION analysis,
in which markers are added to the regression equation
one after another by some suitable criteria, but statisti-
cal analysis shows that the usual stepwise-model selec-
tion methods are suboptimal30. Also, the regression
model imposes fixed relationships between marker
genotypes and phenotype (case versus control), which
might not be realistic.

Early approaches also included the use of neural
networks, which can be thought of as generalizations
of logistic regression to nonlinear relationships30,31.
The idea was that neuronal networks would elegantly
circumvent the curse of dimensionality problem that
is mentioned above. However, with the growth of
genetic markers, particularly SNPs (up to several mil-
lion are now available), a type of data preprocessing
(two-step approach) seems to be more promising.
Consequently, neuronal-network-based analysis is
used with a decreasing frequency.

Sums of single-marker statistics. One approach to find-
ing a set of important SNP markers among a potentially
very large number of such loci is parameter-free and
works as follows18. First, conventional single-locus statis-
tics for each SNP are calculated  for example, the 
chi-square statistic is computed from a contingency
table with two rows that correspond to cases and con-
trols, and three columns that correspond to three SNP
genotypes. Large chi-square values are indicative of asso-
ciation between a SNP and the trait that is being studied.

problem because each statistical test carries with it the
possibility of a false-positive result (BOX 2). Conditional
search seems particularly useful for heterogeneous traits
(when disease is due to one or the other of the two loci),
but has comparatively little value when different loci
interact epistatically (that is, when alleles from both loci
are required for disease). These conclusions were based
on the assumptions of a particular two-locus inheri-
tance model. As is shown below, consideration of alter-
native inheritance models might lead to different results.

In case–control studies with multiple-marker loci
that potentially have different genotype frequencies in
case and control individuals, it is tempting to use the
LOGISTIC REGRESSION MODEL  that is, to form a weighted
sum of genotype codes, where, for example, the three
genotypes at a SNP are assigned codes of 0, 1 or 2.
Weights are determined in such a way that the resulting
sum discriminates in the best possible way between
case and control individuals by showing large values for
the former and low values for the latter. Such studies
have been undertaken successfully for many years. For
example, in a study of the effects of genotypes at a num-
ber of genes on the occurrence of retinopathy among
diabetics, HLA-DR4 was shown to confer a significantly

LOGISTIC REGRESSION MODEL

A statistical model for the
dependency of a binomial 
(two-class) phenotype on a
number of risk factors. The
probability, p, for one of the two
phenotype states is expressed in
the form of its logit, log(p/
(1 – p)), which is assumed to 
be predicted by the linear
combination (weighted sum) 
of the risk factors.

STEPWISE REGRESSION

The step-by-step build-up of a
regression model, which
represents a dependent variable
as a weighted sum (linear
combination) of independent
(risk) variables.

Box 2 | Multiple testing

When markers are tested for linkage or association over the whole genome, each test results in a locus-specific, or
point-wise, p-value, which is the probability that the test statistic exceeds a given threshold by chance. Obviously,
this probability should be kept to a low level by setting an appropriate criterion for significance. In a genomic scan,
the probability that one or more of the tests exceed the chosen threshold would be useful to know. This probability is
the genome-wide (or experiment-wise) significance level, which for a given threshold is much higher than the
pointwise p-value. Formulas have been developed that provide a sufficiently low value of the point-wise p-value for
the genome-wide significance level not to exceed 0.05 (REF. 56). However, it is important to recognize that these
formulas do not apply, for example, to searches for pairs of susceptibility loci because the number of pairs is much
higher than the number of loci. In this case, for n marker loci, n(n – 1)/2 tests rather than only n tests are done,
which exacerbates the multiple testing problem. Possible solutions are computer-based test procedures, such as
permutation tests that free statisticians from the need to focus on statistical measures, the theoretical properties of
which can be analysed mathematicalIy33. However, this is generally possible only for simple statistics and
independent data. For example, in a case–control data set with large numbers of marker genotypes, randomly
permuting the labels case and control breaks any association between genotypes and disease status. For each of a
sufficiently large number (several hundred) of such permutation samples, an analysis is carried out as was done on
the original data. The proportion of permutation samples in which any marker statistic exceeds a given threshold is
then an estimate for the experiment-wise significance level that is associated with that threshold.

Box 3 | Bootstrapping

To take a bootstrap sample of a number n of individuals means to randomly pick 
n copies of individuals. A bootstrap sample might contain some individuals more
than once and others might be missing from it, but a bootstrap sample has all the
essential statistical properties of the original data set and could be regarded as a
random copy of it57. Usually, large numbers of bootstrap samples are generated to
investigate the statistical properties of some procedure.

Bootstrap samples might also be taken under some restrictive conditions. For example,
if the data consist of case and control individuals with associated genotypes for a
number of marker loci, independently sampling from phenotypes and genotypes
generates bootstrap samples under absence of association between the trait phenotype
and the genotypes of each individual. Such ‘null’ samples can be used to evaluate the
significance level of a statistical test in much the same way as permutation samples
(BOX 2). Indeed, bootstrapping and permutation sampling are both resampling
methods, but they have different statistical properties.
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Consider again a single-locus test statistic for the 
j-th SNP marker. In this modified method, the single-
locus test statistic is the product of two chi-squares,
thereby improving the power of this statistical value.
For example, this statistical value is the product of the
two chi-squares  t

i
= χ2

Assoc
× χ2

HWD
 where the first

term is the chi-square that measures the difference in
allele frequencies between cases and controls and the
second term measures departure from the HARDY–

WEINBERG EQUILIBRIUM, either in cases only, or in all indi-
viduals (depending on the data set). The basic concept is
again to combine information for multiple SNPs by
summing the corresponding association statistics, t

i
,

but in this case, sums are formed by adding impor-
tant markers rather than by deleting unimportant
ones. So, marker loci are first ordered according to their
test statistic, t

(1)
≤ t

(2)
≤…. Then, sums are formed

with increasing numbers of terms, s
1

= t
(1)

, s
2

= t
(1)

+ t
(2)

and so on, up to a suitable maximum number — for
example, M = 20, where M is a parameter of the proce-
dure. To see whether a given sum is unusually large, its
significance level is evaluated using a permutation (ran-
domization) test. Consider the data matrix with rows
that correspond to individuals and columns that corre-
spond to variables, one of which indicates disease status

The combined effect of all markers is captured by the
sum of all association statistics. The possibility of this
sum being larger than expected simply by chance is
determined by computing the associated p-value from a
number of bootstrap samples (BOX 3) obtained under
the null hypothesis of no association. As the sum over
all markers presumably contains the effects of some dis-
ease genes but also a large amount of ‘noise’ from unas-
sociated SNPs, the resulting p-value will generally be
large (that is, not significant). The marker with the
smallest TEST STATISTIC is then removed from the sum,
which gives another sum with an associated p-value.
This step is repeated for one marker at a time with
decreasing p-values, and, as the smallest effects are being
removed from the sum, will eventually contain only
markers with large test statistics. The removal of markers
stops once the SIGNIFICANCE LEVEL of the sum reaches a
lower limit of 0.05, for example. Those markers that
remain in the sum are considered to be pre-selected.

The next step is to make random copies of the
original data set, with each copy consisting of a boot-
strap sample obtained under association. The analysis
that was carried out on the original data is then
repeated in each of these replicate copies, each of
which gives a set of pre-selected marker loci. The final
step is then to determine for each marker in what pro-
portion of replicates it was pre-selected. Markers that
were pre-selected in more than 60% of replicates are
deemed to be important for association (and are
known as selected)33 (FIG. 2).

This nested bootstrap approach was applied to a
group of 779 heart disease patients who had undergone
balloon ANGIOPLASTY, 342 of whom subsequently experi-
enced CORONARY ARTERY RESTENOSIS (cases), whereas the
remainder did not (controls)34. In the search for puta-
tive genetic factors that predispose patients to restenosis,
genotypes for 94 SNPs that represented 62 candidate
genes were determined. When applied to these data, the
nested bootstrap procedure selected 11 out of the 
94 SNP markers that represented the following 10
genes: TNFR1, IL4Rα, TP53, CD14, APOA, CETP,
TNFβ, CBS, NOS and MDM2. Interestingly, the set of
selected markers does not correspond exactly to the set
of markers with the largest chi-square statistics. One
marker (a SNP in the TP53 gene) is not selected even
though it has a larger chi-square value than some of the
selected markers, presumably because its inclusion with
other markers that are already in the sum was con-
tributing less than its own chi-square value indicated.
The conclusion from this analysis is that disease suscep-
tibility loci are likely to exist in close proximity to the
selected SNPs. Perhaps the 10 genes that contain these
11 SNPs are directly involved in the occurrence of
restenosis and more biological work will be required to
elucidate disease aetiology.

Although this approach is intuitively appealing, it
does not work in a hypothesis testing framework — the
researcher does not know whether results are statisti-
cally significant or not. The following modified method
allows marker selection under rigid control of the
experiment-wise significance level35.

TEST STATISTIC

A statistic is any function of a
random sample — in particular,
of the observations in an
experiment. A test statistic is a
statistic that is used in a
statistical test to discriminate
between two competing
hypotheses, the so-called null
and alternative hypotheses.

SIGNIFICANCE LEVEL

The proportion of
false-positive test results 
out of all false results  that is,
results that are obtained when
the effect investigated is known 
to be absent (see also false
discovery rate).

ANGIOPLASTY

A medical procedure that is used
to widen coronary arteries with a
thin balloon because these blood
vessels have become clogged.

CORONARY ARTERY RESTENOSIS

The re-occurrence of a narrowing
or blockage of an artery at the site
where angioplasty had previously
been performed.

HARDY–WEINBERG

EQUILIBRIUM

A state in which the proportions
of genotypes present depends
only on the frequencies of alleles
in the genotypes.

Circumventing the multiple testing problem

Noise (genotyping errors) reduction
Trim d markers of outlying HWχ

2 values in controls

• Combine the n largest weighted statistics 
(for example, as a sum), increasing n=1, 2… sequentially

• Evaluate statistical significance for each sum of n statistics 
by calculating the p-value by using the resampling method

Weighting the association statistic
By HWχ

2 in cases or simply by setting weight equals 
to unity, depending on the data set

Choose an appropriate disease-association statistic
For example, allele-frequency difference, t-statistics or 
Pearson χ2 of genotype-count differences

• Choose the smallest p-value as the final statistic and 
evaluate its p-value for overall significance

• Those markers that give rise to the smallest p-value 
are ready for stage 2 analysis, which is mathematical 
modelling of disease risk

Reducing dimensionality

Figure 2 | Flow chart for the set association procedure for
combining association effects of multiple marker loci.
HWχ2, Hardy–Weinberg chi squared; p, probability.
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mean trait value for those individuals with m-locus
genotypes in this partition is recorded. The object of
the CPM is to find those genotypic partitions within
which a trait variability is much lower than between the
partitions. The loci comprised in such a set of geno-
typic partitions are then viewed as influencing the
quantitative trait and this effectively completes step 1 of
the CPM.

In the second step, the selected set of genotypic par-
titions is validated by a well-known technique called
cross-validation. A randomly chosen portion (for
example, 90%) of the observations are used for the
CPM, leading to a number of optimal genotypic parti-
tions. In the remainder of the data, the proportion of
total variability within the optimal genotypic partitions
is computed. This process is repeated many times and
leads to a cross-validated proportion of variability that
can be explained by a set of genotypic partitions. Steps
1 and 2 provide a number of sets of genotypic parti-
tions that influence variation in quantitative trait levels.
Which of these sets is the best, or indeed whether it
makes sense to select a best set, will depend on the par-
ticular criteria that an investigator applies for drawing
inferences about genotype–phenotype relationships
(step 3 of CPM).

The CPM was applied to triglyceride levels of 188
males and 18 SNPs in six coronary heart disease candi-
date gene regions36. Genotypic partitions of size 2 (for all
possible pairs of SNPs) were formed. Of the total num-
ber of 3,235,338 possible genotypic partitions, a much
smaller number of 7,710 was retained after elimination
of the genotypic partitions with a small effect and those
that contain fewer than five individuals. Results showed
that many combinations of loci are involved in triglyc-
eride variability and that the most predictive sets of loci
show non-additivity  that is, some of their effects
come about through locus interactions.

A modification or extension of the CPM is the
multifactor-dimensionality reduction (MDR) method37.
As described by the authors of this approach, ‘‘with
MDR, multilocus genotypes are pooled into high-risk
and low-risk groups, effectively reducing the genotype
predictors from n dimensions to one dimension. The
new, one-dimensional multilocus-genotype variable is
evaluated for its ability to classify and predict disease
status through cross-validation and permutation test-
ing.’’37 When applied to a case–control data set with
breast cancer, this approach revealed significant high-
order interactions between three oestrogen metabolism
genes without significant main effects.

The simple structure of case–control data lends itself
to the analysis by general statistical analysis methods. As
an example, logistic regression with its advantages and
restrictions was mentioned above. Several additional
analysis methods have been proposed, such as the tree-
based association analysis38. This is only one of a group
of RECURSIVE PARTITIONING methods39 that are reminiscent 
of CLUSTER ANALYSIS. It is probably too early to tell which of
the increasing number of different approaches now
being tried on case–control association data will be the
most successful.

(case or control). The latter variable is now replaced by a
random permutation of it, which results in a ‘permuta-
tion sample’ that represents the data without association.
A large number of such permutation samples are gener-
ated and the analysis procedure is repeated for each
sample. The proportion of replication samples with a
particular sum that exceeds the corresponding sum seen
in the observed data approximates to the p-value for that
sum. At this point, the multiple-testing problem (BOX 2)

of testing a potentially very large number of SNPs has
been reduced to testing M sums. The crucial final step is
to define the smallest of the M significance levels as a sin-
gle test statistic, which might occur for m ≤ M summed
marker statistics. The significance level, p

min
, that is asso-

ciated with this test statistic is then evaluated through
permutation tests, and represents a single overall mea-
sure of significance for the whole procedure. The m SNPs,
the summed test statistics of which lead to the minimum
p-value, are selected for further analysis.As this selection
is done under the controlled false-positive rate, p

min
, any

additional analyses of the selected SNPs that are of inter-
est can then be done without incurring a penalty for
additional testing.

This approach was applied to the RESTENOSIS data set34

that had previously been analysed by the bootstrap pro-
cedure. With an overall p-value of 0.04, it resulted in the
selection of ten SNPs that represent the following nine
genes: TP53, CD14, SERPINE1, APOC3, ITGB2, CBS,
NOS, TNFR1 and MDM2. Six of the nine genes are the
same as those selected by the bootstrap procedure and
so are highly likely to be associated with the trait. At this
point, it is unclear which of the two statistical selection
approaches is more reliable. The ultimate confirmation
will be provided by the elucidation of the biological
pathway that leads to the disease.

Joint analysis of multiple loci. Although the above
methods are a clear improvement over traditional
approaches because they combine information from
multiple loci, a potential drawback is that they rely on
single-locus effects, often also called main effects, in
contrast to interaction effects. This shortcoming is
avoided in another parameter-free approach, known as
the combinatorial partitioning method (CPM)36. It
focuses on quantitative phenotypes, such as lipid levels,
and represents an extension to many loci of traditional
genetic analysis of variation in trait levels. For a single
bi-allelic marker locus, traditional analysis compares
the variability in trait values both between the three
genotypes and within the three genotypes. An excess of
the former over the latter represents association
between the marker and the trait. The CPM extends
this concept to many marker loci (SNPs). The focus of
CPM is to form subsets of SNPs that contain different
numbers of loci. For example, for ten SNPs numbered
1 to 10, {2, 4, 5} represents one possible such subset
(here, of size 3). For a particular subset of size m, con-
sider the total number of possible m-locus genotypes.
For instance, with m = 3, the total number of 3-locus
genotypes is 3 × 3 × 3 = 27. A genotypic partition is
now defined as a set of m-locus genotypes and the

RESTENOSIS

A re-narrowing or blockage of
an artery at a site where
angioplasty was previously done.

RECURSIVE PARTITIONING

A process for identifying
complex relationships in large
sets by dividing them into a
hierarchy of smaller and more
homogeneous subgroups on the
basis of the most statistically
significant indicators.

CLUSTER ANALYSIS

A mathematical algorithm that
organizes a set of items
according to their similarity. For
example, genes can be clustered
according to their similarity in
pattern of expression.
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freely available as a computer program (see apriori
algorithm in online links box). Several applications of
this approach have been described to search for asso-
ciations between potentially large numbers of SNPs
and disease status47–49.

Even older than the apriori algorithm is an approach
called Logical Analysis of Data (LAD)50, which has
been designed to ‘‘identify patterns of findings or
syndromes that predict outcomes’’51. Originally
applied to problems in economics, seismology and oil
exploration, LAD has recently been used to identify
subsets of individuals with an increased risk of mor-
tality after exercise electrocardiography51. It will be
interesting to apply these more unusual methods to
gene-mapping problems. Although the apriori algo-
rithm seems suitable for handling extremely large
data sets, LAD might be better suited for candidate
genes with a limited number of genotypes because 
it is much more computationally intensive than the
apriori algorithm.

As mentioned above, a theoretical investigation of
different gene-mapping strategies26 concluded that
analysing all possible pairs of loci confers no advan-
tage over locus-by-locus analysis. However, that analy-
sis was based on inheritance models with rather
strong main effects. To investigate the prospects of
finding trait genes that exert weak effects by them-
selves, consider the extreme case of multi-locus inher-
itance models under which disease occurs only
through interactions between loci52,53. TABLE 1 refers to
one such purely epistatic inheritance model, in which
only three genotype configurations potentially lead to
disease (two of them are 100% penetrant). With allele
frequencies of 0.5 at each of the three susceptibility
loci, the resulting trait has a population prevalence of
6.25% and a heritability of 60%53. At each locus, the
MARGINAL PENETRANCE is the same for each genotype, so
an investigation of genotype or allele frequency differ-
ences between case and control individuals will not
show anything unusual and will have no power.
Interestingly, linkage analysis methods (for example,
in families with two affected offspring) do have mod-
est power for the gene mapping of such traits, which
gives justification for the use of multiple analysis
methods on the same data.

The only possible approach to association map-
ping of such an extremely complex trait is to search

Genotype patterns
The main drawback of conventional methods of gene
mapping is that they rely on analysing one locus at a
time. It is becoming increasingly clear that diseases
most often arise as a result of rather complicated
interactions between genes. A telling example is
Hirschsprung disease, the non-Mendelian inheritance
pattern of which seems to be due to three genes at dif-
ferent genomic locations40. Cases have been reported
in which disease occurs not through any single gene,
but only through interactions between multiple genes.
For example, mice heterozygous for the insulin recep-
tor or the insulin receptor substrate-1 have minor
metabolic abnormalities, whereas compound het-
erozygous animals show marked insulin resistance41.
Another case of interaction effects and no main effects
has been described in a human family42: five family
members with severe insulin resistance were doubly
heterozygous at two unlinked loci, whereas no other
family member showed this trait and these genotypes.
Also, an HLA gene on chromosome 6 and a KIR gene
on chromosome 19 seem to be involved in epistatic
interaction: the combined presence of alleles KIR-3DS1
and HLA-BW4-80ILE is associated with delayed 
progression to AIDS in HIV-positive individuals43.
Additional examples of such digenic traits have
recently been reviewed44.

Traits that are due to specific genotype patterns at
different loci require appropriate search methods,
such as the recently developed approaches described
in the previous section. Interestingly, in artificial intel-
ligence (machine learning) and in operations
research, pattern recognition (also known as data-
mining) methods that were described 10–15 years ago
are only now beginning to find their way into human
genetics and might prove highly successful. They can
only briefly be mentioned in this review. An intrigu-
ing approach was developed about 10 years ago45 for
the analysis of large databases of purchasing transac-
tions (recorded using bar codes), in which one of the
original aims was to elucidate customer preferences by
detecting the patterns of articles purchased. This
approach formalizes pattern recognition by defining
pattern frequencies and relationships in the form of
so-called association rules45. A specific implementation
(known as the apriori algorithm46) allows for the rapid
detection of patterns even in very large databases. It is

MARGINAL PENETRANCE

In epistatic interactions between
two loci asscoiated with disease,
each with three genotypes, the
nine genotype pairs might each
be associated with a certain
penetrance  that is, the
probability that the genotype
pair leads to disease. From these
penetrances and the genotype
frequencies, (marginal)
penetrances might be computed
 that is, penetrances that are
associated with the genotypes at
one of the two loci.

Table 1 | An example of a disease purely caused through interaction between loci

Epistatic disease loci Population frequency Penetrance Expected number Expected number 
Locus A Locus B Locus C P(g) (f) of cases of controls

Genotype at given locus

1/1 2/2 1/1 0.0156 1 25 0

2/2 1/1 2/2 0.0156 1 25 0

1/2 1/2 1/2 0.1250 0.25 50 10

Other genotype 0.8438 0 0 90

Sum 1 – 100 100

Patterns of genotypes at three purely epistatic disease loci (alleles 1 and 2) and the corresponding population frequencies (P(g)), penetrances (f), and expected numbers of
cases and controls that show a given genotype pattern.
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on five million randomly generated R values is approx-
imated. Based on this distribution, a p-value for each
pair of SNPs is computed and the SNP pairs are
ordered by increasing p-value (p

(1)
≤p

(2)
≤ …). The

FALSE DISCOVERY RATE (FDR) method54 is then applied to
determine which of the pairs is ‘significant’ at the 5%
level. This is accomplished, for example, by computing
q

(i)
= i × 0.05/n, where i refers to the order of p-values

and n is the number of SNP pairs with c
L

> 7.78. The
pairs are classed as ‘significant’ when p

(i)
≤ q

(i)
. The

term significant is set in quotation marks because it
does not refer to the usual rate of false-positive results
(that is, the proportion of results that are significant
only by chance), but only to the FDR (that is, the pro-
portion of results that are significant by chance out of
all significant results)55. When applied to the resteno-
sis data set34, two pairs of SNPs (each on different
chromosomes) show association in the controls but
not in the cases, whereas none of the four SNPs show
significantly different genotype frequencies between
case and control individuals in simple chi-square
tests. So, this is an example in which only interaction
effects show a significant result. The previously 
mentioned significant sums over multiple single-SNP
test statistics could be partly due to such interaction
effects.

Conclusion
The rapid increase in the availability of large num-
bers of genetic markers, and the quest for localizing
genes that underlie multi-gene disease traits, repre-
sent a challenge for statisticians to come up with sta-
tistical analysis methods that do justice to this situa-
tion. Here, we have shown the main new developments
in this area. Presumably, none of these methods can
be classed as the ‘best’. One method might be particu-
larly powerful for a given inheritance mode of trait,
whereas another might be rather inefficient. Therefore,
at least as a tool for data exploration, it will be useful
to apply several different analysis methods to a given
body of data.

Many of the newly developed approaches have
been implemented in computer programs so that sta-
tisticians can make efficient use of them. Unfortunately,
non-statisticians sometimes feel that statistical analy-
sis is simply a matter of running a computer program
— nothing could be further from the truth. Such pro-
grams belong in the hands of the specialists if truly
meaningful results are to be obtained, in the same way
as PCR machines belong in the hands of molecular
biologists. There are probably two main reasons for
the ‘push-the-button’ concept of statistical approaches.
First, statistical analysis methods are sophisticated and
often difficult to understand by ‘lay’ scientists, which
might lead to the impression of statistics as an uncon-
trolled black box. Second, computer-based methods
are gaining more and more importance in statistics33,
but the resulting computer programs still represent
sophisticated statistical procedures, which sets them
apart from programs that manipulate data or produce
graphs.

for patterns of genotypes at different loci. As TABLE 1

shows, pattern frequencies are quite different for
affected and unaffected individuals at the trait loci 
most patterns occur only in case or control individu-
als, but not in both. Although it might seem very sim-
ple, the problem is how to detect such patterns in the
thousands of SNPs that are investigated. For example,
with 1,000 SNPs, including disease loci A, B and C, the
total number of different subsets of three SNPs is
equal to n = 166,167,000. Only one of these corre-
sponds to the three susceptibility loci. For the assumed
100 case and 100 control individuals in TABLE 1, the
expected chi-square in the test for equality of pattern
frequencies is equal to 166.67 (26 degrees of free-
dom because the total number of possible patterns is 
3 × 3 × 3 = 27), with an associated significance level of
p = 1.76 × 10–22. If we test each of the n subsets of
three SNPs, adjusting for multiple testing leads to a
corrected significance level of np = 3 ×10–14, which is
still highly significant. This result is realistic for the
given three-locus epistatic model.

In practice, we do not know the number of suscep-
tibility loci and would have to investigate patterns for 
different numbers of trait loci. On the other hand, the
so-called BONFERRONI CORRECTION for multiple testing as
applied above is very conservative12. So, it seems
entirely possible to successfully search for patterns that
discriminate between case and control individuals
despite the very large numbers of patterns that need to
be tested. Additional calculations not described here
indicate that only modest increases in sample sizes are
necessary to localize SNPs that are only in LD with
nearby disease loci, rather than being disease causing
as assumed above.

Analysing all pairs of SNPs
For an exhaustive search of all two-locus interactions
in a case–control study, we recommend the following
procedure, which is designed to find all pairs of
SNPs for which a significant interaction is present in
cases but not in controls, or vice versa. For a given
pair of SNPs, construct a 3 × 3 contingency table that
corresponds to the three genotypes at the two SNPs,
one such table for cases and one for controls.
Compute chi-squares with four degrees of freedom
for each table and form their ratio, R, with the larger 
chi-square, c

L
, being in the numerator. Owing to

extreme SNP allele frequencies, some ratios might be
large only because the smaller chi-square is close to
zero. To avoid such artificial results, there is a focus
on pairs of SNPs with an appreciably high c

L
value —

for example, c
L

> 7.78, which corresponds to the
ninetieth percentile of the chi-square distribution
with four degrees of freedom. For each SNP pair that
satisfies this condition, a p-value that is associated
with the observed R value is computed. Owing to the
conditions imposed and the fact that the SNPs might
be correlated in a given group of individuals, the 
R values do not follow the usual F distribution under
the null hypothesis of equality of SNP by SNP inter-
actions. So, the appropriate null distribution based

BONFERRONI CORRECTION 

When n statistical tests are
carried out, each has the
potential (probability, p, the
significance level) to return a
false-positive result. If tests are
independent of each other, the
so-called experiment-wise
probability that one or more
tests show a false-positive result
is approximately np. So, to
achieve an experiment-wise
false-positive rate of p, each
individual test must only be
allowed a false-positive error rate
of p/n, which is referred to as the
Bonferroni correction.

FALSE DISCOVERY RATE

(FDR). The proportion of
false-positive test results out of
all positive (significant) tests
(note that the FDR is
conceptually different to the
significance level).
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