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T rinucleotide, or triplet, repeats consist of 3 nucleotides consecutively repeated (eg, CCG
CCG CCG CCG CCG) within a region of DNA, a not uncommon motif in the genome
of humans and other species. In 1991, a new type of genetic mutation was discovered,
known as a dynamic or expansion mutation, in which the number of triplets in a re-

peat increases and the length becomes unstable. During the past decade, nearly 20 diseases—
including Huntington disease, 2 forms of the fragile X syndrome, and myotonic dystrophy—
caused by trinucleotide repeat expansions have been identified. The unstable nature of the expanded
repeat leads to remarkable patterns of inheritance in these diseases, distinctly at odds with tradi-
tional notions of mendelian genetics. We review the clinical and genetic features of these disor-
ders, with a particular emphasis on their psychiatric manifestations. We also critically examine
the hypothesis that expansion mutations may have an etiologic role in psychiatric diseases such as
bipolar disorder, schizophrenia, and autism. Arch Gen Psychiatry. 1999;56:1019-1031

Genetic influences play an important etio-
logic role in many psychiatric disorders.1

However, finding the specific genetic mu-
tations involved in the etiology of these dis-
eases has proved extremely difficult.2-4

Many factors contribute to this difficulty,
including a lack of biological findings
to externally validate diagnostic con-
structs,5 phenotypic heterogeneity,6,7 pat-
terns of inheritance that do not fit classic
mendelian patterns,8,9 incomplete pen-
etrance,10-13 and the presumed existence of
phenocopies in which the same clinical
syndrome arises from alternative genetic
and nongenetic factors.14

The problem of finding genetic fac-
tors of etiologic significance for psychiat-
ric disorders has been approached from 2
different directions. On the one hand, a
number of large-scale projects have fo-
cused on finding genetic linkage of dis-
ease phenotype to anonymous genetic
markers.2,15-21 The goal is to determine the

markers most consistently linked to the
disease phenotype, and then gradually nar-
row down the suspect region until a spe-
cific etiologically relevant genetic muta-
tion or variation is identified. These
attempts have met with some success, al-
though the regions of potential linkage re-
main quite large2,18 and no mutations or
etiologically significant variations have yet
been identified. On the other hand, at-
tempts have been made to demonstrate an
association between disease and various
candidate genes, chosen based on theo-
ries of disease pathophysiology or treat-
ment pharmacology. In this case, the gene
is chosen first, and then it is determined
if affected subjects disproportionately in-
herit some marker within or near the gene.
A number of associations have been re-
ported with this approach, but replica-
tion and interpretation of findings have
proved problematic.2,22-25

The recent discovery of trinucleotide
repeat expansion has led to a third ap-
proach: a search for candidate genes with
repeat expansions, a genetic hypothesis of
etiology.26-29 We review the currently known
trinucleotide repeat diseases and the ratio-
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nale for the hypothesis that repeat ex-
pansions may contribute to the ge-
netic etiology of psychiatric disorders.

TRINUCLEOTIDE REPEATS

Trinucleotide, or triplet, repeats are
3 nucleotides consecutively re-
peated (eg, CGG CGG CGG CGG
CGG) within a region of DNA. All
possible combinations of nucleo-
tides are known to exist as triplet re-
peats, though some, including CGG
and CAG, are more common than
others.30,31 The repeats may be within
genes or in intergenic DNA. In genes,
repeats may be found in introns (gene
segments transcribed into RNA but
then excised from the primary RNA
transcript) or in exons (gene seg-
ments that are transcribed and re-
main represented in mature RNA). If
within exons, they may be present in
a translated region and hence en-
code a series of identical amino ac-
ids, or they may occur in regions not
translated into protein. Repeats are
frequently found in genes that en-

code transcription factors (proteins
that regulate the level of expression
of other genes) and in genes that
regulate development.32-34

In 1991, triplet repeats were
found to undergo a new type of ge-
netic mutation, termed a “dynamic”
or “expansion mutation.” In this type
of mutation, through mechanisms
during DNA replication that are only
partly understood,35 the number of
triplets in a repeat increases. Unlike
repeats of normal length, in which
changes in length from one genera-
tion to the next are extremely rare,
expanded repeats tend to be un-
stable—an expanded repeat passed
from one generation to the next will
usually vary in length, typically be-
coming longer. During the past de-
cade, nearly 20 diseases caused by a
trinucleotide repeat expansion have
been identified, as well as other dis-
eases caused by related muta-
tions.36,37 These disorders, with fea-
tures of inheritance often at odds with
the traditional teachings of classic
mendelian genetics, have generated

considerable excitement among ge-
neticists. This excitement has made
an impact on psychiatric genetics, as
aspects of expansion mutation ge-
netics and the remarkable central ner-
vous system manifestations of so
many of these diseases force consid-
eration of the potential role of re-
peat expansion in the etiology of id-
iopathic psychiatric disorders.

THE EXPANSION
MUTATION DISEASES

Figure 1 depicts expansion muta-
tions in Huntington disease (HD)
and fragile X syndrome (A sub-
type), prototypical expansion dis-
orders. In HD, the CAG expansion
is in a protein coding region of an
exon, so that the expansion results
in an abnormal protein. In fragile X
syndrome, the CGG repeat is in an
untranslated region of an exon, and
the expansion prevents gene tran-
scription. Figure 2 overviews the
genetic locations of the repeats in the
other expansion disorders. The
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Figure 1. Molecular pathogenesis of Huntington disease (HD) and the fragile X (FraX) syndrome. Left, The effect of a CAG repeat expansion in the Htt gene. Within
the nucleus (yellow), genes with either a normal CAG repeat or an expanded CAG repeat are transcribed into messenger RNA (mRNA), with normal excision of
introns and splicing together of exons. Outside the nucleus, mRNA with either a normal or a long CAG repeat is translated into protein. The CAG repeat itself,
located within a protein coding region (blue), is translated into a stretch of the amino acid glutamine (Q). The mutant protein, containing an excessively long
polyglutamine (polyQ) repeat, takes on an abnormal conformation that confers new and toxic properties to the protein. Right, The effect of an expansion of the
CGG repeat in the FraX mental retardation type 1 ( FMR1) gene. In FMR1 with a normal-length repeat, the gene is transcribed into mRNA, and the mRNA is
translated into protein. The CGG repeat is located outside the protein coding region and, hence, is not translated into an amino acid repeat. In FMR1 with an
expanded CGG repeat, the expansion prevents gene transcription into mRNA and therefore no protein is synthesized. Disease arises from a lack of the protein.
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Table summarizes some of the ge-
netic features of each disease.

Expansions of CAG repeats lo-
cated within protein coding re-
gions are currently known to cause
8 disorders, 7 of which are similar.
CAG encodes the amino acid gluta-
mine,68 so that the mutant proteins
contain extended stretches of glu-
tamine residues. The number of glu-
tamines in the normal range (be-

low about 35) and abnormal range
(above about 35) are similar in each
disorder (with the exception of SCA6
[spinocerebellar ataxia type 6]; see
below). The clinical phenotypes in-
clude abnormal voluntary and in-
voluntary movements frequently ac-
companied by neuropsychiatric
syndromes. Reliable diagnosis for
most of these disorders is depen-
dent on genetic testing.69,70

The pathological changes of the
polyglutamine diseases are believed
to stem from a toxic gain of func-
tion conferred by the abnormally long
string of consecutive glutamine resi-
dues encoded by the expanded CAG
repeat.68 The pathological process in-
volves neuronal degeneration67,68,71

with selective neuronal vulnerabil-
ity. Even though the genes are ex-
pressed ubiquitously, few abnormali-
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Figure 2. Genetic locations of repeat expansions. Repeat expansions that cause disease have been detected in flanking and intronic regions, transcribed but
untranslated regions, and protein coding regions (orange). Expansions within protein coding regions tend to be smaller than those in other genic regions. EPM1
indicates progressive myoclonic epilepsy type 1; SCA, spinocerebellar ataxia; OPMD, oculopharyngeal muscular dystrophy; MED, multiple epiphyseal dysplasia;
HD, Huntington disease; DRPLA, dentatorubral-pallidoluysian atrophy; and SBMA, spinal and bulbar muscular atrophy.

Summary of the Repeat Expansion Disorders*

Disease Gene Repeat
Amino Acid

Encoded

Normal
No. of

Triplets

Expanded
No. of

Triplets Inheritance
Effect of

Expansion Reference

CAG/Polyglutamine
HD Huntington CAG Gln 6-35 36-121 AD† Abn prt 38
DRPLA Atrophin-1 CAG Gln 3-35 49-88 AD† Abn prt 39, 40
SCA1 Ataxin-1 CAG Gln 6-38 39-83 AD† Abn prt 41
SCA2 Ataxin-2 CAG Gln 14-31 32-77 AD† Abn prt 42-44
SCA3 (MJD) Ataxin-3 CAG Gln 12-39 56-86 AD† Abn prt 45
SCA7 Ataxin-7 CAG Gln 7-35 38-200 AD† Abn prt 46
SBMA Androgen

receptor
CAG Gln 9-36 38-62 X-linked† Abn prt 47

Short Expansions
SCA6 CACNA1A CAG Gln 4-19 20-30 AD Abn prt 48
CCD CBFA1 GCN Ala 17 27 AD Abn prt 49
Synpolydactyly HOXD13 GCN Ala 15 22, 23, or 25 AD Abn prt 50
OPMD PABP2 GCG Ala 6 7-13 AD or AR Abn prt 51
Pseudoachondroplasia/

MED
COMP GAC Asp 5 4 (Contraction)

6-7 (Expansion)
AD Abn prt 52

Untranslated
Fragile X (A subtype) FMRI CGG None (UTR) 6-54 200-2000+ X-linked recessive† ↓Express 53-55
Fragile X (E subtype) FMR2 GCC None (UTR) 6-35 .200 X-linked recessive ↓Express 56
Jacobsen syndrome CBL2 CGG None (UTR) 8-14 .100 Nonmendelian Deletion 57
Myotonic dystrophy MDPK CTG None (UTR) 5-38 50-2000+ AD† Unknown 58-60
SCA8 SCA8 CTG None (UTR) 16-37 107-127 AD Unknown 61
SCA12 PRB55b CAG None (UTR) 7-28 66-78 AD Unknown 62
Friedreich ataxia Frataxin GAA None (intron) 8-22 120-1700 AR† ↓Express 63
EPM1 Cystatin B Dodecamer None (59 flanking) 2-3 30-75‡ AR ↓Express 64, 65

*HD indicates Huntington disease; DRPLA, dentatorubral-pallidoluysian atrophy; SCA, spinocerebellar ataxia; MJD, Machado-Joseph disease; SBMA, spinal and
bulbar muscular atrophy; CCD, cleidocranial dysplasia; OPMD, oculopharyngeal muscular dystrophy; MED, multiple epiphyseal dysplasia; EPM1, progressive
myoclonic epilepsy type 1; Gln, glutamine; Ala, alanine; Asp, aspartic acid; UTR, untranslated region; AD, autosomal dominant; AR, autosomal recessive; Abn prt,
abnormal protein; and ↓Express, decreased gene expression. Data are derived in part from Andrew et al 66 and Ross et al.67 The boundaries of the size of normal
and abnormal repeats will likely change as additional subjects are tested.

†Anticipation.
‡EPM1 repeat is a dodecamer.
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ties have been detected outside the
brain. The areas affected in the dif-
ferent disorders overlap to a consid-
erable extent,67,68,72,73 and include ce-
rebral cortex, basal ganglia, brainstem
nuclei, cerebellar dentate nucleus,
Purkinje cells of the cerebellum, and
spinal and bulbar motor neurons. In
contrast with Alzheimer disease, ab-
normalities in the hippocampus and
the basal forebrain are not promi-
nent.

Microscopic analysis of the af-
fected regions indicates the pres-
ence of neuronal loss and gliosis
without either inflammation or
deposition of extracellular mate-
rial. Aggregates of mutant protein
forming inclusion bodies within
neuronal nuclei and cytoplasm are
a feature of all CAG/glutamine ex-
pansion diseases so far studied.74-78

The role of these inclusions in dis-
ease pathogenesis, if any, remains to
be determined.71 Abnormalities of
dendritic structure have also been
described for HD.79 It is likely that
some of the manifestations of these
diseases arise from neuronal dys-
function as well as neuronal death.74

The CAG expansion that causes
SCA6 is much shorter than that of
the other CAG-related diseases, sug-
gesting a different form of patho-
genesis. The glutamine repeat is in
a variant of the neuronal P-type cal-
cium channel, which is greatly en-
riched in cerebellar Purkinje cells.48,80

Small increases in the length of the
glutamine repeat in this protein
might cause disease by altering chan-
nel function, with a consequent
change in calcium fluxes resulting
in damage to the Purkinje cells.

Three diseases can be caused by
relatively small increases in number
of consecutive GCN triplets (where
N = any nucleotide), resulting in
small elongations of repeats of the
amino acid alanine. Cleidocranial
dysplasia and synpolydactyly are both
disorders of skeletal patterning. In the
latter, the length of the mutant pro-
tein varies in different pedigrees, con-
taining between 6 and 13 extra ala-
nine residues. Pedigrees with the
longer expansions tend to have a
more severe phenotype. An in-
crease from the normal 6 consecu-
tive GCG triplets to between 8 and
13 triplets in the PABP2 gene causes
the autosomal dominant form of

oculopharyngeal muscular dystro-
phy.51 Remarkably, rare homozy-
gotes in which both alleles contain
(GCG)7—a single triplet longer than
normal—develop an autosomal
recessive form of the disease, and
a compound heterozygote with a
(GCG)7 allele and a (GCG)9 allele
has a particularly severe pheno-
type. Small differences in repeat
length, therefore, can alter both dis-
ease phenotype and the mode of dis-
ease inheritance. Most recently,
variations in the GAC repeat in the
cartilage oligomeric matrix protein
have been shown to cause forms of
pseudoachondroplasia and mul-
tiple epiphyseal dysplasia.52

Other diseases are caused by
trinucleotide repeat expansions
occurring within portions of genes
that are not transcribed into pro-
tein.47,53-60,63 As listed in the Table,
the expansions are generally quite
long, but otherwise these diseases
have little similarity to each other.

The fragile X syndrome is the
most common form of hereditary
mental retardation.81 The fragile site
detectable on cytogenetic analysis is
now known to be a manifestation of
a CGG expansion in the 59 untrans-
lated region of the fragile X mental
retardation 1 (FMR1) gene.53-55

The expansion leads to excessive at-
tachment of methyl groups to the
adjacent CpG island (a genomic
region with a disproportionate
number of the base pairs C and G
in doublets) and consequent loss of
gene transcription.82,83 The compli-
cated phenotype includes mental re-
tardation, frequent psychiatric syn-
dromes, and dysmorphic features.84

Fewer than 1% of the cytogenetic
cases of fragile X syndrome actu-
ally arise from a nearly identical
mutation (fragile X subtype E)
in a gene, FMR2, located near
FMR1.56,85-87 The phenotype tends to
be milder.85,88 Three other fragile
sites are caused by repeat expan-
sions. FRAXF (a CCG repeat),89

FRA16A (a CCG repeat),90 and
FRA16B (an A-T rich repeat 33
nucleotides in length)91 are not as-
sociated with a phenotype. FRA11B,
resulting from a CGG expansion in
the untranslated region of the proto-
oncogene CBL2, is associated with
in deletion of the distal portion of
chromosome 11q. The consequent

phenotype, known as 11q- or Jacob-
sen syndrome, includes abnormali-
ties of cognition, facial structure, and
the hematologic system.57

Myotonic dystrophy is charac-
terized by myotonia, cataracts, car-
diac conduction abnormalities, men-
tal retardation in congenital cases, and
marked anticipation (see below). It is
caused by a CTG expansion in the
39 untranslated portion of the gene
encoding the enzyme myotonic dys-
trophy kinase.58-60 The exact mode of
pathogenesis remains controver-
sial,92,93 but may involve both myo-
tonic dystrophy kinase and adjacent
genes.

Expansions in repeats that do
not encode amino acids can also re-
sult in neurodegenerative diseases. A
CAG expansion in an untranslated re-
gion of a gene encoding a subunit of
the enzyme phosphatase 2A ap-
pears to cause an autosomal domi-
nant spinocerebellar ataxia, termed
SCA12, perhaps by altering levels of
gene expression.62 A CTG expan-
sion in an untranslated gene may
cause another form of spinocerebel-
lar ataxia, designated SCA8.61 While
inheritance of SCA8 is autosomal
dominant, penetrance is incomplete
and more likely when the expanded
allele is maternally transmitted.

Friedreich ataxia is an autoso-
mal recessive neurodegenerative dis-
order consisting of hyporeflexia, dys-
arthria, and sensory loss, among
other more variable abnormali-
ties.94 The pathological changes usu-
ally involve atrophy of central sen-
sory pathways, but may also include
cell loss in the cerebellum, basal gan-
glia, and large pyramidal cells of mo-
tor cortex.95 The cause is loss of func-
tion of both alleles of a gene termed
frataxin, which encodes a protein in-
volved in mitochondrial energy me-
tabolism.63,95 Most cases arise as a
result of loss of gene expression
consequent to long expansions of
an intronic GAA repeat. A few af-
fected individuals are compound
heterozygotes, in which one allele
contains a GAA repeat expansion
mutation and the second allele con-
tains an inactivating point muta-
tion within the coding region of the
gene.96

Progressive myoclonic epi-
lepsy is another recessive neurode-
generative disorder, characterized by
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childhood onset, seizures, myoclo-
nus, ataxia, and dementia. Progres-
sive myoclonic epilepsy is rare out-
side Finland, and is of historical
interest as the first recessive hu-
man disease to be studied statisti-
cally and as one of the early disor-
ders for which large-scale group
genetic counseling was under-
taken. Progressive myoclonic epi-
lepsy is usually caused by a repeat
expansion on both alleles in a re-
gion 59 to the site of transcription
initiation of the cystatin B gene.64,65

The disease may also arise when a
repeat expansion on one allele is
inherited with a point mutation
within the gene on the other allele.
The repeating unit is a dodecamer
(CCCCGCCCCGCG) rather than a
triplet; thus, trinucleotides are not
the only units of DNA subject to
pathogenic repeat expansion.

NEUROPSYCHIATRIC
SYNDROMES IN EXPANSION

MUTATION DISEASES

Almost all of the trinucleotide re-
peat expansion disorders involve the
brain, and the central nervous sys-
tem is often the primary organ sys-
tem affected. As a result, either men-
tal retardation or dementia is a
feature of most of the repeat expan-
sion diseases, and classic psychiat-
ric syndromes are common in sev-
eral disorders.

In HD, dementia is of the sub-
cortical type, with losses in cogni-
tive speed, attention, and flexibil-
ity typically more prominent at early
stages than aphasia or agnosia, a pat-
tern opposite that observed in such
cortical dementias as Alzheimer dis-
ease.97,98 Systematic studies suggest
that 70% to 80% of all patients with
HD develop some form of psychiat-
ric disorder in addition to demen-
tia.99 The incidence of affective dis-
order in HD is about 40%, including
a 10% rate of bipolar disorder100

and a suicide rate estimated as high
as 12.7%.99 In addition, irritability,
apathy, and preoccupations with
particular ideas are common find-
ings, while syndromic obsessive-
compulsive disorder and schizo-
phrenia are less common.69

The prevalence of psychiatric
disorder in dentatorubral-pallido-
luysian atrophy is similarly high; the

most systematic study of the psy-
chopathology of this disease found
that 74% of patients had psychiat-
ric syndromes, including mania, de-
pression, and schizophrenia.101 There
is also a suggestion that psychiatric
syndromes are more common in
the SCAs than in control popula-
tions,102 particularly affective dis-
turbance103 and frontal-executive
dysfunction.104-106

Fragile X syndrome is primar-
ily a disorder of neurodevelop-
ment, although other organ sys-
tems are also involved.84 In addition
to mental retardation, the muta-
tion also predisposes affected indi-
viduals to a variety of psychiatric
syndromes. A substantial number of
males with the fragile X mutation
have autism. Nearly 100% have 1 or
more behaviors commonly ob-
served in autism, such as hand flap-
ping and biting, poor eye contact, or
tactile defensiveness. The symp-
tom rate decreases in males who are
mosaic for the expansion or in whom
methylation is only partial.84 Fe-
males with the full mutation (het-
erozygotes) not only have high rates
of cognitive deficits, but also high
rates of anxiety symptoms, affec-
tive syndromes, and schizotypal and
schizoid personality traits.107-109 Car-
riers of the premutation (about 50-
200 repeats, unstable on transmis-
sion) manifest anxiety and obsessive
symptoms, and mood lability that
may not meet the full criteria for an
affective disorder.84,110 The rare E
subtype of the fragile X syndrome
appears to result in a similar though
milder spectrum of cognitive and
psychiatric syndromes.111-113

Neuropsychiatric manifesta-
tions may also be present in other
expansion disorders, although the
available evidence derives from clini-
cal observation rather than system-
atic study. For instance, Jacobsen
syndrome includes mental retarda-
tion and psychomotor slowing.57 A
high rate of suicide has been re-
ported in patients with progressive
myoclonic epilepsy,114 and psychi-
atric syndromes may be common in
Friedreich ataxia.115

ANTICIPATION

Anticipation is defined as decreas-
ing age at onset of a disease (or in-

creasing disease severity) in af-
fected members of successive
generations of a pedigree (see McIn-
nis116 and Asherson et al117 for a full
discussion). The concept dates back
to the 19th century,118 but the term
“anticipation” was first used by Sir
Frederick Mott in 1910. Mott119,120

referred to the “law of anticipa-
tion” after he studied 420 mentally
ill parent-offspring pairs from the
asylums of London, England, and re-
ported an earlier age at onset in the
offspring compared with their par-
ents. In 1948, Penrose121 largely dis-
credited the notion of anticipation
by persuasively arguing that the phe-
nomenon was an artifact of ascer-
tainment. He pointed out that ge-
netic studies would selectively
ascertain (1) late-onset parents
(since individuals with early onset
of a serious illness tend to have re-
duced fertility), (2) offspring with
early onset (since early-onset cases
tend to be more severe and hence at-
tract disproportionate clinical atten-
tion), and (3) families in which on-
set in parents and offspring occurred
simultaneously (a bias of the lim-
ited time frame of most studies). The
influence of Penrose was such that
anticipation was not seriously in-
vestigated for 40 years, when sys-
tematically ascertained patient
samples yielded clear evidence of
anticipation in myotonic dystro-
phy122 and HD.123 Even so, the bio-
logical validity of anticipation
remained in dispute until the dis-
covery of the trinucleotide repeat
expansions.

Two aspects of trinucleotide re-
peat expansion explain anticipa-
tion. First, expanded (but not nor-
mal sized) repeats are often unstably
transmitted, and repeat length tends
to increase in successive genera-
tions (Figure 3, left). This trend is
often modified by a parent of ori-
gin effect: in the CAG repeat expan-
sion diseases with anticipation, ex-
pansion is primarily observed during
paternal transmission. In fragile X
syndrome, Friedreich ataxia, and
myotonic dystrophy, expansion is
primarily observed in maternal
transmission.124,125

The mechanism for repeat
length instability is as yet incom-
pletely understood. For most short
repeats found in the human ge-
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nome, including triplet repeats, mu-
tations (which are rare) usually
involve an expansion (and less fre-
quently a contraction) by 1 or 2 units
of the repeat.126 At a length suffi-
cient to cause disease, however, most
repeats become markedly unstable.
The length may increase by dozens
or even hundreds of triplets from one
generation to the next, with a cor-
relation between repeat length and
instability. At the molecular level,
it is believed that long triplet re-
peats may form into hairpin loops
and other abnormal secondary struc-
tures. The abnormal structures
may then lead to repeat expansion
through errors in DNA replication,
abnormal patterns of recombina-
tion between 2 sections of DNA, or
misguided application of the DNA
repair mechanisms.35

Second, longer repeat expan-
sions are correlated with a younger
age of disease onset (Figure 3, right).
In HD, repeat length explains about
50% to 60% of the variance in age
at onset.66,127-129 Repeat lengths of
more than 60 or 70 CAG triplets fre-
quently result in a juvenile-onset
form of the disease.130-132 However,
the age at onset is highly variable for
all but these longest repeat lengths.
The most common repeat length is
in the range of 40 to 50 triplets; for
these individuals the age at onset
varies from the early 20s to the mid-
60s or even later.

The variability in repeat expan-
sion during intergenerational trans-

mission, coupled with the modest
correlation between repeat length
and age at onset, explains why it was
difficult to definitively establish the
presence of anticipation in HD. De-
finitive proof only emerged with the
discovery of the molecular mecha-
nism. In myotonic dystrophy the re-
lationship between repeat length and
age at onset (and disease pheno-
type) is substantially more robust.
An expansion in the 50- to 80-
triplet range may result only in cata-
ract formation in old age, while a
large expansion (typically greater
than 1000 triplets) generally leads
to a life-threatening congenital dis-
order of muscle and brain.97 Even
with this dramatic progression of dis-
ease phenotype from one genera-
tion to the next, the presence of an-
ticipation in myotonic dystrophy
remained controversial until the dis-
covery of the molecular etiology.79

In 1993, among the first of a
growing number of contemporary
studies of anticipation in psychiat-
ric disease, our group examined the
possibility of anticipation in affec-
tive disorder.133 In 34 bipolar pedi-
grees ascertained for a genetic link-
age study,134 age at onset and disease
severity (measured by episodes of ill-
ness per year) were compared be-
tween generations, using several
sampling schemes to minimize as-
certainment bias. All sampling
schemes revealed significantly ear-
lier age at onset and an increase in
the frequency of disease episodes in

the younger generation, with a pat-
tern resembling that seen in triplet
repeat expansion disorders such as
HD (Figure 4). Controlling for
other possible biases, including sub-
stance abuse and decreased fertility
or premature death of the most se-
verely affected individuals, did not
affect the results. Anticipation re-
mained significant even after con-
trolling for the cohort effect (an ob-
servation that the age at onset of
mood disorders has progressively de-
clined during the past century135,136).
Several analyses of bipolar pedi-
grees by other investigators have
been consistent with this initial find-
ing.137-140 The available evidence sug-
gests, on average, a 6- to 10-year ad-
vance in the age at onset from the
older generation to the younger.

A series of studies similar to
those performed in bipolar disor-
der, incorporating strategies to mini-
mize ascertainment and other bi-
ases, has suggested the presence of
anticipation in schizophrenia. For
instance, Bassett and Husted,141 ana-
lyzing data (from Penrose121) on all
first admissions to psychiatric hos-
pitals in Ontario, Canada, between
1926 and 1943, found clear evi-
dence of anticipation; 88% of 137
pairs showed an intergenerational
age-at-onset difference, with a
median onset 15 years earlier in
the younger generation. At least 7
other studies142-148 have also found
evidence for anticipation in schizo-
phrenia.
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Other psychiatric disorders may
show anticipation. Using methods
similar to those used in the initial
study of anticipation in bipolar dis-
order, anticipation has been de-
tected in panic disorder.149 Autism
presents a more complicated pic-
ture, in that affected individuals only
rarely have children. As a conse-
quence, there have been no formal
studies of anticipation in autism.
However, a compelling body of work
indicates that the parents of autis-
tic children tend to have a higher
than expected prevalence of behav-
ioral and emotional symptoms gen-
erally similar to (but milder than)
those seen in their offspring with au-
tism. These abnormalities include
anxiety disorder, social phobia, and
depression,150,151 and, most strik-
ingly, social deficits such as limited
friendships, diminished displays of
affection, odd behavioral stereoty-
pies, rigidity, and perfectionism.152

Despite the large amount of
data consistent with the presence of
anticipation in psychiatric disor-
ders, the case is far from proven. In
some populations, such as schizo-
phrenia in the genetically isolated
Palau islanders, no anticipation has
been detected.153 The role of the co-
hort effect, in which the onset age,
severity, or frequency of a disease
changes for an entire population, as
well as reductions in fertility in the
most severely affected individuals (a
strong factor in schizophrenia154),
may confound analysis of anticipa-
tion. Another bias might stem from
increasing familiarity with a dis-
ease in successive generations of an
affected family, leading to earlier rec-

ognition of symptoms. There is wide
agreement that it is nearly impos-
sible to eliminate the ascertain-
ment biases described by Pen-
rose,121 and such biases appear to
account for apparent anticipation in
at least some studies.155 There has
also been disagreement about the
statistical methods used in some
studies to determine the signifi-
cance of differences in onset age be-
tween generations.156,157 Finally, an-
ticipation could derive from genetic
factors other than trinucleotide re-
peats, such as increasing accumula-
tion of multiple genetic vulnerabil-
ity factors in successive generations,
or perhaps unstable deletions.158

In sum, there is a large amount
of data supporting a younger age at
onset of psychiatric disorders in later
generations of affected pedigrees.
The problem is how the data are best
interpreted. Given the often subtle
nature of genetically validated an-
ticipation, such as in HD, the mean-
ing of the data will only become clear
when the molecular causes of these
diseases are known. Until then, the
possibility of anticipation is one hint
as to the type of mutations that may
be present in psychiatric diseases.

EXPANSION MUTATION AND
NONMENDELIAN GENETICS

The repeat expansion diseases are
characterized by patterns of inher-
itance, in addition to anticipation,
that fall outside traditional mende-
lian genetics. The explanation again
resides with the unique phenom-
enon of a mutation that quantita-
tively varies among affected indi-

viduals with the same disease and is
unstably transmitted from one gen-
eration to the next.

In fragile X syndrome, in which
genotype-phenotype correlations
have been thoroughly analyzed, at
least 5 factors are known to affect the
phenotypic expression of the muta-
tion: sex of the affected individual,
repeat length (including repeat
contractions159-161), the pattern of
X-inactivation (for females), so-
matic cell mosaicism, and methyl-
ation status of the CpG island adja-
cent to the repeat.162 These factors
have a profound affect on the clini-
cal phenotype and patterns of in-
heritance. There are cases in both
myotonic dystrophy and fragile X
syndrome of repeat contraction to
normal or near normal length,163,164

and at least 3 pairs of monozygotic
twins fully or partially discordant for
fragile X syndrome have been re-
ported in the literature.162,165

Apparent sporadic cases of sev-
eral repeat expansion diseases can be
explained by expansion of a repeat
of intermediate length, unstable but
not long enough to cause disease it-
self, to a full mutation in the subse-
quent generation.166-168 Similarly, for
unclear reasons, a full CGG expan-
sion in the CBL2 gene only occa-
sionally causes chromosomal dele-
tion, also leading to sporadic cases.57

Some of the unusual genetics of
the repeat disorders are reminis-
cent of the genetics of psychiatric
disorders, in which inheritance is
also characterized by apparently
nonfamilial cases, skipped genera-
tions, monozygotic twin discor-
dance, and marked variability of phe-
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notype within a pedigree.169-171

However, these unusual patterns of
inheritance are more frequent in the
psychiatric disorders than in the re-
peat expansion diseases, suggest-
ing the presence of a number of in-
teracting etiologic factors.

ATTEMPTS TO DETECT
TRINUCLEOTIDE REPEAT

EXPANSION IN PSYCHIATRIC
DISORDERS

Several different strategies have been
used to search for repeat expan-
sions in DNA from individuals with
psychiatric disorders. One of these
strategies involves testing the length
of repeats present in known genes
or fragments of genes. The only re-
quirement is that a small region of
the DNA sequence flanking both
sides of the repeat is known. Sev-
eral criteria have been used to se-
lect individual repeats for testing in
psychiatric disorders. Repeats that
expand to cause one disease have fre-
quently been examined in other dis-
eases,172,173 leading to the finding that
perhaps 5% of cases of autism in
males result from the fragile X mu-
tation.84 Other repeats are of inter-
est because of the function of the
gene in which they reside. The CAG
repeats in the gene encoding the cal-
cium-gated potassium channel
hSKCA3174-178and in the gene encod-
ing mab21L1, a regulator of neuro-
nal development,179 have been stud-
ied; psychiatric disease has not been
consistently associated with long
or expanded repeats in either gene.
Repeats have also been selected for
testing in psychiatric disorders
based on their length, the variabil-
ity of their length in the normal
population, and their location in a
chromosomal region to which psy-
chiatric disorders have been
linked.180 No marked association
with a psychiatric disease has yet
been demonstrated, although only
a small fraction of all repeats has
been examined.179,181-187

A second strategy, a search for
expansions at the protein level, takes
advantage of an antibody that de-
tects expanded, but not normal
length, glutamine repeats.188 Re-
ports of expanded glutamine re-
peats in schizophrenia have been in-
consistent.189-191

A third strategy, known as RED
(repeat expansion detection), was
developed by Schalling and col-
leagues192 to screen genomic DNA
for expansion mutations. The ad-
vantage of the technique is that no
prior knowledge of repeat location
or flanking sequence is required. The
disadvantage is that RED only indi-
cates the presence of a longer than
normal repeat; it does not specify
which repeat, of the hundreds pres-
ent in the human genome, is abnor-
mally long. Also, for most types of
repeats, RED is only able to detect
expansions beyond about 40 to 50
triplets. Smaller expansions, such as
those that cause SCA6 or oculopha-
ryngeal muscular dystrophy, would
not be detectable. Nonetheless, RED
has proved valuable in isolating the
causative genes of 3 of the CAG ex-
pansion disorders.61,62,193

At least 15 independent stud-
ies have used RED to compare CAG
repeat lengths of subjects with bi-
polar affective disorder and/or
schizophrenia with those of con-
trols, with mixed results. Of 8 stud-
ies examining bipolar disorder, 4 re-
ported an association between
bipolar disorder and longer CAG
repeats,194-197 while another 4 did not
find a significant association.198-201

In schizophrenia, an association
with long CAG repeats was found
in 3 studies194,202,203 but not in 7
others.198-200,204-207

Two CAG expansions that oc-
cur frequently in the normal popu-
lation, located in an intron of the
SEF2-1 gene on chromosome 18181

and in the ERDA1/Dir1 locus on
chromosome 17,208,209 are now
known to account for most of the
long CAG repeats detected by
RED.195,210 Variations in the fre-
quency of these expansions in dif-
ferent populations may explain some
of the discrepant findings in RED
studies of psychiatric disorders, and
there are inconsistent data concern-
ing the role of these expansions
themselves as risk factors for psy-
chiatric disease.195,199 However, the
most important implication of their
discovery is that it will now be pos-
sible to focus on families with CAG
expansions not accounted for by
these 2 repeats. The use of RED, or
alternative techniques,211 to search
for expansions of other types of re-

peats, such as CGG or GAA, has
received relatively little atten-
tion,206,207 and remains a promising
approach.

CONCLUSIONS

The unique phenotypic and geno-
typic characteristics of the repeat ex-
pansion disorders present a new per-
spective from which to view human
disease. Previously enigmatic phe-
nomena, such as anticipation, quali-
tative and quantitative differences in
disease phenotype among individu-
als within the same pedigree, and
monozygotic twin discordance, can
be understood at the molecular level
as consequences of repeat length
variation. Equally intriguing is the
frequency with which the central
nervous system is affected in these
disorders, with psychiatric syn-
dromes not uncommon and at times
the presenting manifestation of the
disease. The psychiatrist, neurolo-
gist, or other clinician has the chance
to make a specific diagnosis based
on a genetic test (widely available
for most expansion diseases), to pro-
vide a specific prognosis, and, when
appropriate, to offer predictive
testing for at risk individuals.

Might repeat expansion ac-
count for some portion of the ge-
netic susceptibility to idiopathic psy-
chiatric disorders? Diseases such as
bipolar affective disorder, autism,
and schizophrenia certainly have
similarities to the known repeat
expansion diseases, including
prominent brain involvement and
nonmendelian modes of inherit-
ance, most notably anticipation. At
present, the evidence supporting a
role of repeat expansion in the psy-
chiatric disorders remains prelimi-
nary and inconclusive. Over the next
few years, in conjunction with other
genetic studies of psychiatric disor-
ders and with advances in the Hu-
man Genome Project and related en-
deavors, it should be possible to
reach a more definitive conclusion.
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