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Abstract

Haploinsufficiency, wherein a single functional copy of a gene is insufficient to maintain normal function, is a major cause of
dominant disease. Human disease studies have identified several hundred haploinsufficient (HI) genes. We have compiled a
map of 1,079 haplosufficient (HS) genes by systematic identification of genes unambiguously and repeatedly compromised
by copy number variation among 8,458 apparently healthy individuals and contrasted the genomic, evolutionary,
functional, and network properties between these HS genes and known HI genes. We found that HI genes are typically
longer and have more conserved coding sequences and promoters than HS genes. HI genes exhibit higher levels of
expression during early development and greater tissue specificity. Moreover, within a probabilistic human functional
interaction network HI genes have more interaction partners and greater network proximity to other known HI genes. We
built a predictive model on the basis of these differences and annotated 12,443 genes with their predicted probability of
being haploinsufficient. We validated these predictions of haploinsufficiency by demonstrating that genes with a high
predicted probability of exhibiting haploinsufficiency are enriched among genes implicated in human dominant diseases
and among genes causing abnormal phenotypes in heterozygous knockout mice. We have transformed these gene-based
haploinsufficiency predictions into haploinsufficiency scores for genic deletions, which we demonstrate to better
discriminate between pathogenic and benign deletions than consideration of the deletion size or numbers of genes
deleted. These robust predictions of haploinsufficiency support clinical interpretation of novel loss-of-function variants and
prioritization of variants and genes for follow-up studies.
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Introduction

With array-based copy number detection and the current
generation of sequencing technologies, our ability to discover
genetic variation is running far ahead of our ability to interpret the
functional impact of that variation. Several software tools exist for
predicting the phenotypic impact of mutations that change the
amino acid sequence of an encoded protein [1]. These tools are
essentially proteomic and genomic, rather than genetic, in
perspective; no distinction is made between mutations that are
dominant or recessive in action. By contrast, there is a lack of tools
that predict the phenotypic impact at the organismal level of
unambiguous loss-of-function mutations of an encoded protein
(e.g. truncating mutations and whole gene deletions). Not all loss-
of-function mutations are deleterious, especially when heterozy-
gous. It is generally considered that recessivity is the norm for
diploid genomes [2]. Some loss-of-function mutations even confer
selective advantages [3]. It is clear from resequenced exomes [4]
and genomes [5] and CNV surveys [6] that every genome
harbours tens of unambiguous loss-of-function mutations.

A pressing clinical need for interpreting genetic variation is in
distinguishing between pathogenic and benign copy number
variants (CNVs) revealed by array-based profiling of patients [7].
With the current resolution of microarrays in clinical practice,
these variants are typically large, rare deletions, often encompass-
ing multiple genes. The most obvious pathogenic mechanism for
heterozygous loss-of-function mutations (such as large rare
deletions) is haploinsufficiency (HI), wherein a single functional
copy of a gene is insufficient to maintain normal function. Only a
few hundred genes have been reported haploinsufficient so far
[8,9]. Previous studies have shown that gene sets related to
haploinsufficiency, such as genes implicated in dominant diseases
and genes overlapped by CNVs, have biased evolutionary and
functional properties [10–12]. However, such investigations often
compare those gene sets to the genome average and have been
descriptive rather than predictive in scope.
We sought to explore further systematic biases in the properties

of known HI genes, and to develop a predictive model to assess for
each gene in the genome the probability that it exhibits
haploinsufficiency with respect to the severe developmental
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disorders that are the mainstay of clinical genetic practice. As it is
not known for most genes in the genome whether or not they
exhibit haploinsufficiency, we maximized the power of this
predictive approach by assembling a large training set of
‘haplosufficient’ (HS) genes that do not exhibit haploinsufficiency
resulting in severe developmental anomalies. We reasoned that
currently the most effective way of screening for HS genes is use
robust CNV discovery to identify genes that are wholly or partially
deleted among thousands of adults recruited as controls for
genome-wide association studies. We take advantage of the fact
that the impact of large deletions on coding sequence is more
unambiguously interpretable than other types of genetic variation,
such as point mutations or small insertion/deletions.

Results

Here we predict human haploinsufficient genes by integrating
diverse genomic, evolutionary and function properties that we
show are characteristic of haploinsufficiency. We further validate
those predictions with independent experimental and clinical data.
The framework of this study is outlined in Figure 1. While various,
but not necessarily mutually exclusive, physiological mechanisms
have been proposed to underlie haploinsufficiency, including
dosage threshold effects and altered stoichiometry of a macromo-
lecular complex [13,14], our approach does not assume that one
or other of these mechanisms predominates.
We first compiled a list of known human HI genes and a catalog

of HS genes. Known HI genes were collated from literature [8,9].
The catalog of HS genes was generated from genes disrupted in a
loss-of-function manner in control individuals used in genome-
wide association studies by CNVs detected in data from the
Affymetrix 6.0 chip (see Methods and Figure S1). We identified
2,676 putative HS genes seen in any control individuals and 1,079
seen in two or more controls (Table S1 and Figure S2), and used
the latter set in most downstream analyses Thus the final list of HI
and HS genes contains 301 and 1,079 genes respectively.
To systematically assess the difference in properties between HI

and HS genes, we gathered a large number of annotations
describing the evolutionary, functionary and interaction properties
of genes (see Methods) and examined the distribution of each
individual property in HI and HS genes. We found that HI genes

have consistently more conserved coding sequence (human-
macaque dN/dS, p = 3.12e-26), less mutable promoter (p,1e-
30), paralogs with lower sequence similarity (p = 1.84e-9), longer
spliced transcript (p,1e-30), longer 39UTR (p=2.63e-12), higher
expression during early development (p = 1.10e-15), higher tissue
specificity in expression (p = 2.29e-6), more interaction partners in
both a protein-protein interaction network (p,1e-30) and a gene
interaction network (p,1e-30) and higher chances of interacting
with other known HI genes (p,1e-30) and cancer genes (p,1e-30)
(Figure 2). Some biological insights can be gained from these
comparisons. For instance, the average sequence identity to the
closest paralog of HS genes is significantly higher than that of HI
genes, suggesting functional compensation between recently
duplicated genes that shield each other from reduction in dosage.
Interestingly, growth rate of yeast heterozygous deletion strains
does not seem to differ between their HI human homologs and HS
human homologs, probably reflecting the vast functional differ-
ences between the majority of yeast and human genes, except
those involved in highly conserved cellular processes.
The highly significant differences in genomic, evolutionary,

functional and network properties between HI and HS genes
suggest they may be predictive of haploinsufficiency. However,
since each annotation is only available for a fraction of genes in the
genome (Table S2), there is a trade-off between the increase in
prediction performance by considering more properties and the
decrease in the genomic coverage of genes we could predict.
Therefore, we aimed to select a small number of most predictive
properties that are relatively ‘orthogonal’ in the kind of
information they provide (Methods and Table S3). After
evaluating many different possible combinations of predictor
variables (Figure S3) we selected a model comprising of dN/dS
between human and macaque, promoter conservation, embryonic
expression and network proximity to known HI genes. The
training data with all these information available consisted of 234
HI genes and 326 HS genes.
We are interested in the relative contributions of each selected

property in the model. We used linear discriminant analysis (LDA)
as the supervised classifier, which, given multi-dimensional data and
class labels, finds the linear combination of the given dimensions
(linear discriminant) that maximizes the inter-class variance. We
scaled each property to the same variance before entering the model
so that their contribution can be measured by the coefficients of the
resulting linear discriminant (Figure 3). We found that proximity to
known HI genes in the probabilistic gene network is the single most
heavily weighted predictor of haploinsufficiency.
To evaluate the performance of the model, we adopted a 10 fold

cross-validation strategy and calculated the area under the ROC
curve (AUC) (Figure 3) and Matthew correlation coefficient
(MCC) (Methods) as measurements of prediction performance.
The model achieved an AUC of 0.81 and a MCC of 0.50. We
showed that this prediction accuracy is not appreciably affected by
the calling threshold used to define the CNVs that underpin the
HS gene catalog, nor by the frequency threshold in controls used
to define HS genes (Figure S6). We also showed that prediction is
not appreciably improved by using a Support Vector Machine
classifier, which is more computationally intensive (Figure S7). We
demonstrated that combining the predictor variables together
generated a more predictive model than considering any of the
individual predictor variables in isolation (max AUC=0.78 for
network proximity to known HI genes, Figure S4). We also
confirmed our hypothesis that contrasting known HI and inferred
HS genes should be more predictive of HI than simply contrasting
known HI genes to the rest of the genome (max AUC=0.75,
Figure S5).

Author Summary

Humans, like most complex organisms, have two copies of
most genes in their genome, one from the mother and one
from the father. This redundancy provides a back-up copy
for most genes, should one copy be lost through
mutation. For a minority of genes, one functional copy is
not enough to sustain normal human function, and
mutations causing the loss of function of one of the
copies of such genes are a major cause of childhood
developmental diseases. Over the past 20 years medical
geneticists have identified over 300 such genes, but it is
not known how many of the 22,000 genes in our genome
may also be sensitive to gene loss. By comparing these
,300 genes known to be sensitive to gene loss with over
1,000 genes where loss of a single copy does not result in
disease, we have identified some key evolutionary and
functional similarities between genes sensitive to loss of a
single copy. We have used these similarities to predict for
most genes in the genome, whether loss of a single copy is
likely to result in disease. These predictions will help in the
interpretation of mutations seen in patients.

Predicting Haploinsufficiency in the Human Genome

PLoS Genetics | www.plosgenetics.org 2 October 2010 | Volume 6 | Issue 10 | e1001154

Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson


Gordon Robertson




Figure 1. Outline of the prediction framework.
doi:10.1371/journal.pgen.1001154.g001

Figure 2. Properties that distinguish HI genes from HS genes. The upper part of the figure shows the comparison of the mean of each
individual property between HI genes and HS genes. The values are transformed to z-scores relative to the genome average. The error bars represent
two times the standard error of the mean. The bars in the middle part shows the transformed p value (2log10(p)) of the Mann-Whitney U test on each
property. The dashed line marks a p value of 0.05.
doi:10.1371/journal.pgen.1001154.g002
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We then used the model to estimate a probability of being HI
( p(HI) ) for all protein-coding genes in the genome for which all
four selected properties were available (12,443 genes, over half of
the total protein-coding genes) (Table S5, Dataset S1), the
distribution of which is clearly bimodal, with a large peak near
0.2 and a much smaller peak at 1 (Figure 4, left). The distributions
of p(HI) for the HI and HS training sets are clearly differentiated
(Figure 4, right). It is not possible to assess how well-calibrated
these probabilities are, as the fraction of human genes that exhibit
HI is not known. We therefore sought to validate these predictions
using indirect approaches that examined the distribution of p(HI)
in independent gene sets enriched for HI. As there is no credible
estimation of the number of human HI genes, in some of the

following validation analyses we arbitrarily labeled the genes in the
top 10% of p(HI) as being predicted HI genes. However, the
results were robust against this threshold being varied by at least a
factor of at least 2 (data not shown).
First, we asked if genes implicated in human dominant diseases

were enriched in our predicted HI genes relative to recessive-
disease-causing genes. We retrieved 571 and 772 genes implicated
in dominant and recessive disease from the OMIM and hOMIM
database [10,15], respectively, with no information regarding
haploinsufficiency (and thus not included in our training data), and
compared the distribution of predicted p(HI) against each other.
The HI status could be predicted for 392 dominant genes and 606
recessive genes, of which 87 and 39 were predicted as being HI,
respectively. This 4.14 fold enrichment is highly significant
(p = 4.46e-13, Fisher’s exact test). Simply comparing the distribu-
tion of p(HI) values for these dominant and recessive genes also
shows a highly significant shift towards high p(HI) values in
dominant relative to recessive genes (p = 4.44e-16, Mann-Whitney
U test; Figure 5). Second, we asked if heterozygous knockout of the
orthologs of predicted human HI genes are more likely to cause
severe phenotypic abnormalities in mice. For this purpose, we
extracted a list of 1,523 mouse genes whose heterozygous knockout
cause various abnormal phenotypes from MGI database [16],
mapped them onto orthologous genes in humans, removed
orthologs to genes in our training genesets and extracted the
predicted p(HI) for the remainder. HI status could be predicted for
the orthologs of 1,063 of these genes and 260 (24.5%) of them
were predicted HI, indicating a 2.45 fold enrichment (p,1e-30,
Fisher’s exact test ) (Figure 6). If focusing on those genes of which
the heterozygous LOF phenotypes involve prenatal lethality
(MP:0002080), the fold of enrichment increased to 4.38
(p = 3.60e-12, Fisher’s exact test) (28 predicted as HI out of 64
that could be predicted).

Using haploinsufficient gene predictions to assess
pathogenicity of deletions
We investigated how our gene-based predictions of haploinsuf-

ficiency might be used to discriminate between benign and
pathogenic genic deletions. We considered that a natural way to
score the probability of a deletion causing a haploinsufficiency
phenotype is to generate a LOD (log-odds) score comparing the
probability that none of the genes covered by the deletion will
cause haploinsufficiency with the probability that at least one of

Figure 3. Assessment of model performance. The ROC curve
demonstrates the performance of the model evaluated by 10-fold cross-
validation. The lower right part shows the relative contribution of each
predictor variable to the prediction model measured by the absolute
value of the scaling factor of each predictor variable constituting the
linear discriminant.
doi:10.1371/journal.pgen.1001154.g003

Figure 4. Predicted probability of being haploinsufficient across the genome. The histogram on the left shows the distribution of the
predicted probability of being haploinsufficient ( p(HI) )of all 12,443 predictable genes. The histograms on the right shows the distribution of the
predicted p(HI) of the HI training set (light grey) and the HS training set (dark grey).
doi:10.1371/journal.pgen.1001154.g004
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the genes will cause haploinsufficiency, as shown schematically in
Figure 7. This LOD score is calculated using the formula below:

ln
1{P 1{p(HI)ð Þ
P 1{p(HI)ð Þ

! "

Higher LOD scores indicate deletions that are more likely to be
pathogenic as a result of haploinsufficiency. Note that this score
assumes that there is no statistical interaction between the genes.
We then considered how these deletion-based haploinsufficiency

scores might be used to assess whether a genic deletion observed in
a patient might cause their disease. One way of framing
probabilistically this intuitively simple question is to estimate the
opposing probability, that the deletion is unrelated to the patient’s
disease status. We can relate this to the probability of drawing an
individual at random from a healthy control population with a
deletion at least as pathogenic as the deletion in the patient. We
can estimate this probability empirically as the proportion of
healthy controls with a genic deletion having the same or greater
haploinsufficiency score.
To test this approach, and to avoid circular reasoning, we

generated a set of gene haploinsufficiency predictions using a
slightly smaller set of HS genes identified in a large subset of the
GWAS controls. The performance of the HI predictions using the
slightly smaller HS gene training data was very similar to that of
the full predictive model described in the previous section, as
assessed by ten-fold cross validation (Text S1). We then identified
LOF deletions in the remainder (N= 2,322) of the GWAS controls
[17], which had not been used to train the predictive model, and
determined the distribution of the maximal deletion haploinsuffi-
ciency score (based on the new gene haploinsufficiency predic-
tions) observed in each control individual. We investigated
whether the distribution of maximal LOD scores is significantly

different between European-American (E-A) and African-Ameri-
can (A-A) GWAS controls. We observed that there was not a
significant difference in median haploinsufficiency scores in E-A
and A-A populations (p = 0.71, Mann-Whitney U test), although
the E-A controls have a slightly longer tail of more pathogenic
deletions (e.g. a higher proportion of E-A controls have deletions
with LOD scores greater than 3, Table S4). The 50%, 90%, 95%
and 99% percentiles of the distribution for maximal LOD score
for E-A and A-A controls cohorts are listed in Table 1.
We calculated a LOD score for each of 487 pathogenic de novo

deletions submitted by clinical geneticists to the DECIPHER
database [18]. We focused exclusively on deletions known to be de
novo variants, as we infer that their pathogenicity has been ascribed
primarily on the basis of their inheritance status. The distributions
of maximal LOD scores in GWAS controls and LOD scores of
pathogenic DECIPHER deletions are shown in Figure 7. The
pathogenic deletions have strikingly significantly higher LOD
scores than deletions observed in GWAS controls (p,1e-30,
Mann-Whitney U test). We observed that for 92% of the
pathogenic deletions there was a probability of less than 5% of
drawing an individual at random from our control population with
a genic deletion of equal or greater LOD score, and for 83% of
pathogenic deletions there was a less than 1% probability.
We computed ROC curves to compare three different

approaches for discriminating between pathogenic deletions and
deletions seen in controls: (i) our LOD scores, (ii) the length of the
deletion, and (iii) the number of genes in the deletion (Figure 8).
These ROC curves clearly show that the haploinsufficiency LOD
score is the best metric for discriminating between pathogenic
deletions in patients and deletions seen in controls. We provide a
script and input files to calculate LOD scores and make
comparisons with control data (Protocol S1).

Figure 5. Enrichment of predicted HI genes in dominant genes
relative to recessive genes. This plot shows the fold of enrichment
of predicted HI genes in dominant genes relative to recessive genes
(thick solid line) as a function of the proportion of top predictions
labeled as being haploinsufficient. Also plotted is the transformed p
value (2log10(p)) of the corresponding Fisher’s exact test (thick dashed
line). The horizontal dashed line marks the p value of 0.05.
doi:10.1371/journal.pgen.1001154.g005

Figure 6. Enrichment of predicted HI genes in orthologs of
mouse haploinsufficient genes and mouse haplolethal genes.
This plot shows the fold of enrichment of predicted HI genes in human
orthologs of mouse haploinsufficient genes (black solid line) and mouse
haplolethal genes (black dashed line) relative to the genome average as
a function of the proportion of top predictions labeled as being
haploinsufficient. The two lines in grey show the transformed p values
of the corresponding Fishers’ exact test. The horizontal dashed line
marks the p value of 0.05.
doi:10.1371/journal.pgen.1001154.g006
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Haploinsufficient gene predictions and loss-of-function
sequence variation
We investigated whether the gene-based probabilities of

haploinsufficiency that we have generated are of general utility
across different forms of genetic variation. If this is indeed the case
then we should expect that genes harbouring loss-of-function
substitutions or small indels in apparently healthy individuals
should not have a high p(HI). We identified 349 genes as having
LOF substitutions and indels in 12 recently sequenced exomes [4],
of these, we could estimate p(HI) for 176 that were not also in the
HS training set (and thus represent a fair set for independent
comparisons). These genes are highly significantly enriched among
genes with low probabilities of exhibiting haploinsufficiency
(p = 1.06e-20 when comparing to the genome, and p,1e-30
when comparing to known HI genes, Mann-Whitney U test). This
result implies that there are not substantial differences between
genes that tolerate whole gene deletions and those that tolerate

smaller loss-of-function variants. Moreover, by studying the allele
frequency spectrum apparent in a large gene-resequencing dataset
that has been extensively studied for patterns of selective constraint
[19–21] we observed that nonsynonymous variants in genes more
likely to exhibit haploinsufficiency are highly significantly skewed
towards rarer variants than nonsynonymous variants in genes less
likely to exhibit haploinsufficiency, in both African Americans and
European Americans (p = 2.9e-7 and 4.0e-3 respectively, one-
sided Mann-Whitney U test, see also Figure S9) reflecting greater,
on average, selective constraint on genes we predict to exhibit
haploinsufficiency (Text S1).

Discussion

We have undertaken a systematic characterization of human
haploinsufficient genes by contrasting them with a set of
haplosufficient genes derived from non-pathogenic CNVs, devel-
oped a prediction model on the basis of the most significant

Table 1. Percentiles of the distribution of maximal LOD scores seen in controls.

Test cohort name Sample size HS gene source 50% 90% 95% 99%

African-American controls (GAIN) 889 WTCCC2+HapMap1 20.39 0.67 0.82 2.32

European-American controls (GAIN) 1433 WTCCC2+HapMap1 20.39 0.24 0.82 3.24

This table reports the LOD score at different percentiles of the distribution of maximal LOD scores seen in healthy controls from two populations: European-Americans
and African-Americans. ‘‘HS gene source’’ reports the control data used to assemble the HS gene list used in training the predictive model. Note that the training data is
distinct from the controls used to generate the distribution of maximal LOD scores to prevent any bias towards underestimating the LOD score percentiles.
doi:10.1371/journal.pgen.1001154.t001

Figure 7. Calculation of deletion-based LOD scores and the distribution of LOD score of control individuals and pathogenic de novo
deletions. The upper portion of the figure is a schematic demonstration of the calculation of the deletion-based LOD score. The contribution of
genes with high p(HI) is accordingly weighted in a probabilistic way. The deletion with the largest LOD score in each individual is recorded and their
distribution is shown in the lower portion of the figure. The distribution of maximal LOD scores of 2,322 control individuals are shown in green and
the distribution of LOD scores of 487 pathogenic de novo deletions from DECIPHER are in red. Using the control distribution as the null, the
probability a deletion is pathogenic can be assessed.
doi:10.1371/journal.pgen.1001154.g007
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differences, and assigned predicted probability of being haploin-
sufficient to more than half of the protein-coding genome.
Our finding that functional interaction with known HI genes

was the single most predictive property of HI genes probably
reflects the modularity of the interaction network, suggesting
certain pathways or biological processes, such as early develop-
ment morphogenesis, being more sensitive to dosage changes than
others. However, it is also possibly influenced by an ascertainment
bias with which HI genes are discovered.
The accuracy of our haploinsufficiency probabilties is limited by a

number of factors, such as imperfect training data, although we have
taken considerable steps to limit false positives, and missing data
among predictor variables in our model. As network proximity to
known HI genes is the single most predictive variable we eagerly
await the construction of networks with increasing coverage and
completeness, in the expectation that it should improve our
prediction power. The gene coverage of our method could potentially
be increased by using multiple imputation approaches to impute
missing data [22]. To trial this approach, we imputed missing
predictor variables using the predictive mean matching method,
which allowed us to increase considerably the number of genes for
which we could predict haploinsufficiency from 12,443 to 17,456
(Text S1, Table S5, Dataset S2). The resultant increase in size of
training data also led to a slight improvement in prediction accuracy
(AUC increased from 0.81 to 0.83, Figure S10), and we observed
similar levels of enrichment of known dominant genes and mouse
haploinsufficient genes pre- and post-imputation (Figure S11 and
Figure S12), suggesting that multiple imputation is a reliable method
to increase genome coverage. Another limitation of our method is the

broad phenotypic outcome being predicted. Essentially, we are
contrasting HI genes that cause a broad range of developmental
disorders, with HS genes for which haploidy does not majorly impair
an individual’s ability to participate as a control in a genome-wide
association study. We note that this broad phenotype is nevertheless
considerably more constrained than that being considered by
prediction algorithms based on evolutionary conservation, which
are essentially integrating any deleterious phenotype manifested
among any of the environments encountered during millions of years
of evolution, across all possible modes of inheritance and genetic
backgrounds. Despite the breadth of the phenotype implicit within
conservation-based predictions, this class of algorithms has been
demonstrated many times to be of appreciable utility [19,23].
To support clinical interpretation of deletions seen in patients, we

have transformed our gene-based predictions of haploinsufficiency
into haploinsufficiency scores for individual deletions. Currently,
clinicians typically use the length of a deletion or the number of genes
deleted to assess the pathogenicity of a deletion. We have shown that
our pathogenicity scores represent a superior metric to these existing
approaches for classifying pathogenic deletions. We believe that the
most appropriate use of these deletion-based haploinsufficiency
scores is to compare deletions seen in patients with those seen in
controls, and that quantifying the fraction of control individuals with
a deletion at least as pathogenic as that seen in a patient provides a
rational basis to classify pathogenic deletions. This fraction
represents the probability of observing such a deletion by chance
and thus the probability that a deletion will have been misclassified as
pathogenic. A clinician can therefore set a particular haploinsuffi-
ciency score threshold to define pathogenic deletions through
considering the misclassification rate with which they are comfort-
able. We have provided the necessary software tools to allow these
haploinsufficiency scores to be calculated for any genic deletion, and
automated calculation of these LOD scores and comparison with
control deletions will be integrated into the forthcoming release (v5)
of the DECIPHER database (personal communication: Helen Firth,
Nigel Carter, Manual Corpas), which is used by over 170 clinical
centres worldwide to interpret chromosomal rearrangements seen in
patients (the gene-based predictions ( p(HI) ) are already available in
the current release of DECIPHER, Figure S8).
We only observed subtle differences in the distribution of

haploinsufficiency scores seen in European-American and African-
American populations (Table S4), which might reflect a higher
fraction of deleterious alleles in populations with non-African
ancestry. Further investigation of these differences is warranted to
see whether the haploinsufficiency scores observed in a patient
ought to be compared with controls from a matched population.
It has recently been suggested that some developmental

disorders result from the presence of two independent deletions
in the same genome, the ‘two-hit’ hypothesis [24]. This hypothesis
suggests a subtly different assessment of a patient’s CNV data is
required, through considering the question: ‘is the SET of
deletions observed in my patient causal of their disease’. Another
way of viewing this important question is that it requires
consideration of the genome-wide haploinsufficiency ‘burden’
rather than the haploinsufficiency scores of individual deletions.
The probabilistic framework we have established for assessing
pathogenicity of individual deletions naturally extends to this
situation. Rather than combining the haploinsufficiency probabil-
ities for individual genes within a deletion to calculate a
haploinsufficiency score for that variant, we can combine the
haploinsufficiency probabilities for all deleted genes in the genome
to calculate a haploinsufficiency LOD score for that genome, and
compare this genome-wide haploinsufficiency score with those
observed in healthy controls to assess the probability of sampling a

Figure 8. Comparison of different metrics for assessing
deletion pathogenicity. Three ROC curves repesent the performance
of three different methods for distinguishing between pathogenic
deletions from DECIPHER and the most pathogenic deletions observed
in control individuals. The blue curve denotes using LOD score
calculated from predicted probability of exhibiting haploinsufficiency
as the metric of pathogenicity. The green curve denotes using the
number of genes deleted as the metric, in which case the most
pathogenic deletion per individual is the one containing greatest
number of genes in that individual. The red curve denotes using the
size of deletion as the discriminating metric.
doi:10.1371/journal.pgen.1001154.g008
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healthy individual with a genome with a haploinsufficiency burden
at least as high as that in the patient. This approach also naturally
extends to an assessment of the genome-wide haploinsufficiency
burden from other classes of LOF mutation.
One requirement of the haploinsufficiency score approach for

assessing pathogenicity of individual deletions is that data quality
between patients and controls is similar. If there are systematic
differences between the sensitivity and specificity of CNV
ascertainment in patients and controls then this may lead to
biased comparisons of haploinsufficiency scores. This potential
limitation is largely mitigated by an inherent focus on the largest
deletions in a genome, which are typically long enough for many
different technology platforms to have essentially complete
sensitivity at very high specificities.
In addition to the use of the deletion-based and genome-wide

haploinsufficiency scores described above, we envisage that our
gene-based predictions of haploinsufficiency have two additional
applications: (i) prioritization of variants for follow-up studies and
(ii) integration into association testing to increase power; and we
consider each of these these in turn. First, our predictions of
haploinsufficiency provide a rational basis for prioritizing
heterozygous variants for follow-up genetic and/or functional
studies. The burden of having to validate increasing numbers of
benign variants is an appreciable barrier to the translation into
clinical practice of genomic technologies of ever-increasing
resolution. A method that accurately hones in on potential causal
variants could alleviate this burden considerably. The prioritiza-
tion of variants need not be restricted solely to unambiguous loss-
of-function variants. Most rare functional variants in any given
genome are heterozygous nonsynonymous substitutions, many of
which result in a complete or partial loss-of-function of the
encoded gene. We contend that the prediction power of popular
methods for predicting the functional impact of nonsynonymous
substitutions from structural information and evolutionary con-
servation, such as SIFT [25] and POLYPHEN [26], is limited by
an inability to discern from cross-species alignments whether
purifying selection at a given site is acting in a recessive, additive or
dominant manner. Combining these genotype-oblivious predic-
tions with our predictions of haploinsufficiency, should enable
rational, genotype-aware prioritization of heterozygous nonsynon-
ymous variants. The second application of these predictions is to
integrate them directly into association testing. It has been
suggested that weighting variants by their probability of having a
functional impact should improve power in resequencing studies to
detect functional units (e.g. genes, pathways) enriched for
functional variants [27]. As noted above, most of the rare variants
considered in these studies are only observed in the heterozygous
state, thus, if functional, they have to be exerting a dominant or
semidominant effect, and predictions of haploinsufficiency,
because haploinsufficiency is a major mechanism underlying
dominance, are a highly relevant weighting factor.
The framework that we have developed that integrates

functional, evolutionary and genomic properties of genes, could,
by judicious selection of different training datasets be easily and
broadly extended to include other classes of variant (e.g.
duplications, gain of function mutations), different genetic models
(e.g. recessive effects) and different, and potentially more specific,
phenotypic outcomes (e.g. disease-specific).

Methods

Identifying haplosufficient genes from CNV data
We compiled a set of CNVs from three genotyping datasets

generated from Affymetrix 6.0 platform, 210 unrelated HapMap

individuals [28], 2,421 control individuals used in GWAS studies
of bipolar and schizophrenia [17] and 6,000 individuals
participating WTCCC2 as common controls, using Birdsuite
[29]. All these CNVs were annotated against EnsEBML protein-
coding gene annotation build 50 [30]. Genes with all transcripts
satisfying one of the following criteria: deletion of over half of the
coding sequence, deletion of the start codon, deletion of the first
exon, deletion of splice-signal and deletion that causes frame-shift,
were considered loss-of-function (Figure S1) and for the gene to be
included as haplosufficient, such events are required to occur in at
least two apparently healthy individuals.

Preparation of predictor variables
Genomic properties. The length of gene, spliced transcript,

39UTR and coding sequence and the number of exons were
calculated on the basis of gene annotation downloaded from
EnsEMBL. The number of protein domains was retrieved from
EnsEMBL.

Evolutionary properties. dN/dS data was downloaded
from EnsEMBL. Genomic Evolutionary Rate Profiling (GERP)
[31] score was downloaded from EBI. Two summed GERP
values, one for coding sequence and the other for promoter region,
defined as bases within [2100, 100) window centered at
transcription start site, were then calculated for all human
protein-coding transcripts according to EnsEMBL annotations
and summarized by gene using the median values. The number
and identity of paralogs were downloaded from EnsEMBL.

Functional properties. Gene expression profiles in human
were obtained from the GNF Atlas [32]. Total expression levels
were normalized across genes and the standard deviation of
expression across normal tissue types of each gene was used to
indicate its tissue specificity of expression. Genes over-expressed by
at least 8 fold in human embryonic stem cells [33], fetal tissues [32]
and mouse fetal tissues [34] were collectively treated as genes
expressed at embryonic stage. A binary coding was used to
represent this property in which genes expressed at embryonic
stage were labeled 1 and the rest were labeled 0.

Network properties. Two interaction networks were used.
One is a binary protein-protein interaction network integrated
from a number of sources [35–39]. The other is a probabilistic
gene interaction network (a network of 470,217 links among
16,375 human genes calculated using methods previously
described for yeast [40] and worm [41] and derived from 22
publicly available genomics datasets including DNA microarray
data, protein-protein interactions, genetic interactions, literature
mining, comparative genomics, and orthologous transfer of gene-
gene functional associations from fly, worm, and yeast; I.L.,
E.M.M., manuscript in preparation) where the weight of a link is
the log likelihood score of the interaction [40]. Measures of
centrality (degree, betweenness) and modularity (cluster coefficient)
were calculated using MCL [42]. Shortest path distance and sum
of weight of interactions [41] were calculated as measures of
proximity to a group of ‘seed’ genes.

Other properties. A list of 300 genes implicated in cancer
was downloaded from the COSMIC database [43]. Growth rate
of yeast heterozygous deletion strains were from Deutschbauer et al
[13].

Assessment of correlation of individual properties with
haploinsufficiency
For continuous variables, the two-tailed Mann-Whitney U test

was performed to assess if positive (haploinsufficient) and negative
(haplosufficient) training data have the same median value for
potential predictor variables. For two-class categorical features,
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Fisher’s exact tests were performed. Statistical tests were
performed using R (http://www.r-project.org).

Feature selection for the predictive model
We assessed different potential sets of predictor variables for

input into the predictive model using the following criteria: (i) they
allow prediction for at least half the genes in the genome, (ii) the
Spearman correlation between all pairs of predictor variables is
less than 0.3, (iii) they are drawn from different broad categories
(genomic, evolutionary, functional and network) if possible, iv)
achieve best performance in model assessment (see below).

Assessment of model performance
The sensitivity of the prediction was plotted against (1 - specificity)

and the area under the ROC curve (AUC) [44] was used as
quantitative measure of the performance of the model, where
sensitivity =TP= TPzFNð Þ, and specificity =TN= TNzFPð Þ. The
other measure used is the Matthews correlation coefficients (MCC)
[45], defined as:

TP|TN{FP|FNffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
TPzFPð Þ TPzFNð Þ TNzFPð Þ TNzFNð Þ

p

To avoid over-fitting, the sensitivity and specificity were calculated
using 10-fold cross-validation. To overcome the variability caused by
random partition involved in 10-fold cross-validation, each such
assessment was repeated 30 times and the mean values were
reported.

Supporting Information

Dataset S1 HI_prediction.bed: Gene-based probability of
exhibiting haploinsufficiency in BED format which can be loaded
into UCSC genome browser.
Found at: doi:10.1371/journal.pgen.1001154.s001 (0.95 MB
TXT)

Dataset S2 HI_prediction_with_imputation.bed: Gene-based
probability of exhibiting haploinsufficiency (generated using gene
properites that include imputated values) in BED format which
can be loaded into UCSC genome browser.
Found at: doi:10.1371/journal.pgen.1001154.s002 (1.33 MB
TXT)

Figure S1 Procedure for LOF calling. The flow chart shows the
pipeline used to identify LOF genes. A gene with all its transcripts
disrupted under any of the four considered LOF scenarios is
regarded as LOF. On the right, the numbers under each scenario
denotes the number of detected LOF events meeting that criteria.
A LOF event is defined as loss of function of one transcript in one
individual.
Found at: doi:10.1371/journal.pgen.1001154.s003 (0.24 MB PDF)

Figure S2 Number of human haplosufficient genes discovered
from Affymetrix 6.0 array. The plot shows the number of LOF
genes discovered as a function of the number of apparently healthy
individuals being assayed. The red line represents all LOF genes
whereas the gene line represents recurrent LOF genes, i.e. HS
genes.
Found at: doi:10.1371/journal.pgen.1001154.s004 (0.08 MB PDF)

Figure S3 Comparison of model performance. The AUCs of
each combination of predictor variables in 10-fold cross validation
repeated 30 times are shown as vertical bars with error bars
representing 2 times standard deviation. The mean AUC (red),
mean MCC (green) and the overall gene coverage (blue) are labeled

on top of each bar. The bar pointed to by the black arrowhead is the
chosen combination of predictor variables.
Found at: doi:10.1371/journal.pgen.1001154.s005 (0.29 MB PDF)

Figure S4 Prediction performance of single predictor variable
and integrated model. Mean AUC of each model in 10-fold cross-
validation repeated 30 times are shown as vertical bars with the
actual values label at the top.
Found at: doi:10.1371/journal.pgen.1001154.s006 (0.09 MB PDF)

Figure S5 Prediction performance of using HS and genome
background as negative training. The plot compares the cross-
validation performances resulted from using different gene sets as
negative training set. The triangle represents HS gene set
generated from CNV data. The squares represent different sizes
of random gene sets sampled from the genome after excluding
known HI genes. For each size, the gene set was sampled 20 times
and the standard deviation of the resulting performances is shown
as error bar.
Found at: doi:10.1371/journal.pgen.1001154.s007 (0.07 MB PDF)

Figure S6 Prediction performance under different parameters
used in generation of negative training set. The cross-validation
performance (AUC) resulted from using negative training sets
generated with different parameters are represented by blue
vertical bars with axis on the left. The sizes of these negative
training sets are represented by red vertical bars with axis on the
right. Bars are grouped by the CNV calling parameters, LOD
score, and within each group the darkness of coloring represent
different frequency threshold used to define HS as shown in the
legend. The bar pointed by the black arrowhead represent
parameters and corresponding negative training set adopted in
further analysis.
Found at: doi:10.1371/journal.pgen.1001154.s008 (0.11 MB PDF)

Figure S7 Comparing the prediction performance of LDA and
SVM. The plot shows the comparison of prediction performance
between LDA (dark bar) and SVM (light bar) using three
approaches (from left to right): self-validation, leave-one-out
cross-validation and 10-fold cross-validation. In the first two
comparisons, SVM exhibits only very marginal improvement over
LDA, whereas in the third LDA is marginally better.
Found at: doi:10.1371/journal.pgen.1001154.s009 (0.01 MB PDF)

Figure S8 Examples of highlighting candidate genes, the 8p23.1
deletion. GATA4, the gene whose haploinsufficiency is attributed
to the congenital heart malformation phenotype of the 8p23.1
deletion syndrome, is shown in this screenshot of the DECIPHER
web browser to have the highest predicted haploinsufficiency of all
24 genes in this 3.4 Mb deletion interval.
Found at: doi:10.1371/journal.pgen.1001154.s010 (0.02 MB
PNG)

Figure S9 Derived allele frequency spectrum of variants in
different gene sets. This figure shows the spectrum of derived allele
frequency (DAF, represented here as counts of derived allele in the
population) of nonsynonymous SNPs and synonymous SNPs
discovered by resequencing of human genes in a) 15 African
Americans and b) 20 European Americans. In each plot, DAF of
variants located in genes of different p(HI) are compared side by
side, where bars of decreasing darkness represent quantiles of
decreasing p(HI), such that the 0–25% quartile is that with the
highest probability of being haploinsufficient.
Found at: doi:10.1371/journal.pgen.1001154.s011 (0.31 MB PDF)

Figure S10 Assessment of model performance after imputation.
The ROC curve demonstrates the performance of the model
trained on the enlarged training set using 10-fold cross-validation.
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The error bars represent standard errors of the mean. The lower
right inset shows the relative contribution of each predictor
variable to the prediction model measured by the absolute value of
the scaling factor of each predictor variable constituting the linear
discriminant.
Found at: doi:10.1371/journal.pgen.1001154.s012 (0.11 MB PDF)

Figure S11 Enrichment of predicted HI genes in dominant
genes relative to recessive genes. The plot compares the fold of
enrichment of predicted HI genes in dominant genes relative to
recessive genes before (red line and circle) and after (blue line and
triangle) imputation under a shifting threshold of p(HI) above
which genes are regarded as HI.
Found at: doi:10.1371/journal.pgen.1001154.s013 (0.08 MB PDF)

Figure S12 Enrichment of predicted HI genes in orthologs of
mouse haploinsufficient genes and mouse haplolethal genes. The
plot compares the fold of enrichment of predicted HI genes in
human orthologs of mouse haploinsufficient genes (red lines) and
mouse haplolethal genes (blue lines) relative to the genome average
before (darker lines with squares) and after (lighter lines with
triangles) imputation under a shifting threshold of p(HI) above
which genes are regarded as HI.
Found at: doi:10.1371/journal.pgen.1001154.s014 (0.08 MB PDF)

Protocol S1 Calculating LOD scores. Script and input files for
calculating the LOD score of a deletion.
Found at: doi:10.1371/journal.pgen.1001154.s015 (3.04 MB ZIP)

Table S1 Composition of negative training set.
Found at: doi:10.1371/journal.pgen.1001154.s016 (0.03 MB PDF)

Table S2 Genomic coverage of gene properties.
Found at: doi:10.1371/journal.pgen.1001154.s017 (0.07 MB PDF)

Table S3 Spearman correlation between pairs of gene properties.

Found at: doi:10.1371/journal.pgen.1001154.s018 (0.07 MB PDF)

Table S4 Comparison of LOF deletions between European and
African Americans.
Found at: doi:10.1371/journal.pgen.1001154.s019 (0.09 MB PDF)

Table S5 Number of genes with missing values in predictor
variables.
Found at: doi:10.1371/journal.pgen.1001154.s020 (0.07 MB PDF)

Text S1 Supplementary notes.
Found at: doi:10.1371/journal.pgen.1001154.s021 (0.23 MB PDF)
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