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Abstract

MicroRNAs are small non-coding RNAs involved in post-transcriptional regulation of gene expression. Due to the poor
annotation of primary microRNA (pri-microRNA) transcripts, the precise location of promoter regions driving expression of
many microRNA genes is enigmatic. This deficiency hinders our understanding of microRNA-mediated regulatory networks.
In this study, we develop a computational approach to identify the promoter region and transcription start site (TSS) of pri-
microRNAs actively transcribed using genome-wide RNA Polymerase II (RPol II) binding patterns derived from ChIP-seq data.
Based upon the assumption that the distribution of RPol II binding patterns around the TSS of microRNA and protein coding
genes are similar, we designed a statistical model to mimic RPol II binding patterns around the TSS of highly expressed,
well-annotated promoter regions of protein coding genes. We used this model to systematically scan the regions upstream
of all intergenic microRNAs for RPol II binding patterns similar to those of TSS from protein coding genes. We validated our
findings by examining the conservation, CpG content, and activating histone marks in the identified promoter regions. We
applied our model to assess changes in microRNA transcription in steroid hormone-treated breast cancer cells. The results
demonstrate many microRNA genes have lost hormone-dependent regulation in tamoxifen-resistant breast cancer cells.
MicroRNA promoter identification based upon RPol II binding patterns provides important temporal and spatial
measurements regarding the initiation of transcription, and therefore allows comparison of transcription activities between
different conditions, such as normal and disease states.
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Introduction

MicroRNAs are small (,22 nucleotides) non-coding RNAs
known to regulate the expression of target genes by promoting
mRNA degradation and suppressing translation [1,2,3,4]. The
discovery of microRNAs has identified new mechanisms of gene
regulation that play critical roles in multiple biological processes,
including cell cycle control, cell growth and differentiation,
apoptosis, embryo development, and so on [5,6,7,8,9]. While
several hundred precursor microRNAs (pre-miRNAs) and mature
microRNAs have been sequenced and annotated in human,
mouse, rat, and drosophila genomes [10], most primary micro-
RNAs (pri-miRNAs), which are transcribed by RNA Polymerase
II (RPol II) and further processed to pre-miRNAs in the nucleus,
have yet to be identified.

The regulation of microRNA biogenesis consists of three major
steps 1) pri-miRNA transcribed by RNA polymerase II and III; 2)
microRNA maturation, including nuclear cleavage of the pri-
miRNA to precursor microRNA and nucleocytoplasmic export,
and 3) RISC (RNA-induced silencing complex) assembly that
converts pre-miRNAs to mature microRNAs [11,12,13,14].
Although microRNA biogenesis can be regulated at any of these
three steps, identifying microRNA transcription start sites and
regulatory regions is critical to understanding transcription factor-
mediated regulation. Toward this objective, previous studies have
used individual genome features, such as transcription factor
binding site prediction [15], sequence conservation among
multiple species [16], expressed sequence tags (ESTs) [17], and
genome wide binding patterns of RPol II [18]. More recently,
epigenetic marks, including trimethylation of lysine 4 at histone
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H3 (H3K4me3), have been shown to be highly localized at gene
promoters [19], including microRNA promoter regions [20].
However, many of the previously identified pri-miRNAs have yet
to be fully or accurately annotated, and transcriptional mecha-
nisms governing microRNA regulation remain incompletely
understood.
In the current study, we designed a computational approach

using genome-wide RPol II binding patterns to identify the
promoter region and transcription start site of pri-miRNAs that
are actively transcribed. Because transcriptional regulation of
most intronic microRNAs is controlled by promoter sequences of
the corresponding host protein-coding genes [21], we focused on
‘‘intergenic’’ microRNA, i.e., microRNAs residing outside of
intronic regions of a host gene and previously demonstrated to be
primarily transcribed by RPol II [14]. Our model can be used to
scan the upstream regions of annotated microRNAs and identify
putative transcription start sites and active promoters, providing a
statistical framework for evaluating sensitivity and specificity of
the model prediction and for self-correcting experimental
variation in RPol II binding signals, thus making it possible to
compare microRNA promoter signals under different biological
conditions.

Results

The goal of this study was to use ChIP-seq derived RPol II
binding data to identify promoter regions of microRNAs actively
transcrbied. We develop a computational model to assess changes
in microRNA transcription and genome-wide RPol II binding
patterns in steroid hormone-treated breast cancer cells. Four
biological conditions and two breast cancer cell lines were utilized:
vehicle-treated (control) hormone-dependent MCF7, the anti-
estrogen resistant MCF7 subline MCF7-T (tamoxifen resistant,
described previously in Fan et al., 2006 [22]) and MCF7 and
MCF7-T treated with 17-b-estradiol (E2) for three hours. RPol II
patterns were determined using ChIP-seq (chromatin-immuno-
precipitation followed by next generation sequencing Illumina 1G
platform). ChIP-seq fragments that had either a poor quality score
or could not be mapped to a unique genomic locus were removed;
this analysis resulted in 5-7 million DNA fragments for each of the
four conditions (MCF7+/2E2; MCF7-T+/2E2). In addition,
mRNA expression levels were determined for the same conditions
using Affymetrix Human Genome U133 plus 2 GeneChip [22].
The overall procedure to systematically identify regulatory

regions of human microRNA genes is demonstrated in Figure 1.

Figure 1. Procedure for identifying microRNA promoters. The overall procedure includes four major steps: (1) using ChIP-seq experiment to
identify genome-wide RPol II binding patterns; (2) characterizing the features of the RPol II binding pattern surrounding the transcription start site
(TSS) of coding genes; and (3) scaning genomic regions upstream of all annotated microRNAs containing similar binding patterns as protein coding
genes; and (4) validating the identified microRNA regulatory regions.
doi:10.1371/journal.pone.0013798.g001
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As our approach assumes that the distribution of RPol II binding
patterns around the transcription start site (TSS) of microRNA
and protein coding genes are similar, we first designed a statistical
model to mimic RPol II binding patterns around the TSS of well-
annotated promoter regions of highly expressed protein coding
genes. To identify promoter regions of expressed microRNAs, we
systematically scanned the upstream regions of all the intergenic
microRNAs searching for genomic regions statistically similar to
RPol II binding patterns around the TSS of the coding genes. We
then validated our findings by examining the conservation, GC
content, and activating histone marks in the identified promoter
regions.

RPol II binding patterns around the TSS of expresed
protein coding genes
We first examined the RPol II binding pattern around the TSS

of expressed protein coding genes, whose express levels are
evaluated using Affymetrix Human Genome U133 plus 2
GeneChip [22]. The signal intensities were extracted using
Affymetrix Microarray Suite 5.0 (MAS5). MAS5 uses a non-
parametric statistical test (Wilcoxon signed rank test) to produce a
detection call (Absent (A), Present (P) or Marginal (M)) for each
probe set, based on whether the hybridization signal of perfect-
matched probes is significantly greater than their corresponding
mismatches. For the genes whose expression levels can be reliably
detected (Present), we calculated the total number of RPol II-
derived fragments within 5,000 base pairs (bp) upstream and
downstream of the TSS, producing a RPol II binding landscape in
the regulatory regions of expressed genes. Not surprisingly, we
observed significant enrichment of the RPol II signal on top of the
TSS (Figure 2A), which gradually declines towards both upstream
and downstream (transcript) regions. In the transcript region
(downstream), higher steady state RPol II signals are maintained
compared to upstream regions, eventually entering intergenic
regions (background). We further sub-classified expressed genes
based upon their expression levels, and genes with higher
expression levels tended to display higher the average RPol II
signals around the TSS (Figure 2A). For the coding genes with
undetectable (Absent) expression levels, RPol II enrichment
around the TSS was markedly lower; the minor enrichment of
RPol II signal around TSS is perhaps due to quiescent
mechanisms such as RPol II staling.
To mimic RPol II binding patterns surrounding the TSS of

expressed genes, a graphic model was used (Figure 2B). Intuitively,
for any given genomic region, the total number of RPol II binding
fragments should follow a Poisson distribution, and we therefore
focused on 200-bp genomic intervals. For each protein coding
gene, the genomic region was classified into three categories: one
central interval (centered at the TSS), 25 upstream intervals, and
25 downstream intervals. The Poisson parameter l for each interval
was based on the transcription level of the gene being studied and
the location of the interval relative to the transcription start site. As
shown in Figure 2B, five factors were used to model the Poisson
parameter l: S – the number of RPol II binding fragments in the
central interval (location of the TSS); T – the number of RPol II
binding fragments in the steady transcript region; B – the number
of RPol II binding fragments in the steady background region and;
Kp and Kt – decay factors of the number of RPol II binding
fragments in the promoter and transcription regions, respectively.
These five factors each follow a Gamma distribution genome wide
among all the expressed genes; therefore, we assume that the RPol
II binding patterns around the TSS of expressed genes were
determined by 10 Gamma parameters W (see methods).

For each of the four biological samples (MCF7+/2E2; MCF7-
T+/2E2), the 10 parameters were identified by maximizing the
posterior probability defined as Pr X,YDW½ " (for details methods see
Appendix S1), where X denotes the number of detected RPol II-
ChIP-seq fragments; Y stands for the five hidden variables that
determine the Poisson parameter li (Eq. 2) for each gene; and W
represents the ten parameters describing the distribution of the five
hidden variables. The optimal estimations for the 10 parameters in
four conditions (MCF7+/2E2; MCF7-T+/2E2) are shown in
Table S1. In all four samples, the expected promoter decay factors
Kp were larger than the expected transcription decay factor Kt,
indicating that RPol II binding quantities reached steady state

Figure 2. RPol II binding fragments surrounding TSS of protein
coding genes. (A) The ChIP-Seq-derived RPol II binding pattern
around theTSS of protein coding gene in MCF7 cells. Protein-coding
genes (n = 16,000) were separated into six groups, based upon their
expression levels, which are measured using microarray experiments.
(B) A statistical model of RPol II binding pattern surrounding the TSS of
expressed genes. The adjacent genomic regions are divided into
multiple 200-bp bins, in which the number of RPol II fragments is
assumed to follow Poisson distribution. For each gene, the overall
binding pattern can be characterized by five hidden variables, including
three variables describing the expected number of fragments in the
background region (B), the transcript region (T), and the bin that
contains TSS (S), and two variables modeling the signal decay rates in
both upstream and downstream of the TSS (Kp and Kt). Each hidden
variable follows a Gamma distribution genome-wide.
doi:10.1371/journal.pone.0013798.g002
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levels more rapidly in the transcript region (downstream of the
TSS) than in the promoter (upstream) region. If a higher-than-
background RPol II binding implies additional interaction(s) with
other transcription factors, the longer regulatory region upstream
of the TSS supports the concept that transcription factors initiate
transcription by binding regulatory elements upstream of the TSS;
this is due to the nature of ChIP-seq experiment, in which both
protein-DNA and protein-protein interactions will be cross linked.
We also observed that the expected quantities of RPol II in the
transcript region (T) were higher than the intergenic region (B),
indicating constant transcriptional activity in the expressed genes.

Predictive power of RPol II binding pattern and
transcriptional activity
To test the predictive power of our model for identifying

microRNA promoter regions, we constructed a ‘‘gold standard’’
by focusing only on genes with lengths of open reading frame
greater than 10,000-bp and with no other genes present within
10,000-bp of the TSS. These criteria avoid potential bias due to
the transcriptional activities of other genes, which could result in
an over estimation of the number of RPol II binding sites; this
analysis results in 4007 expressed genes (Present on the Affymetrix
array) and 2134 unexpressed genes (Absent genes) in MCF7 cells.
To identify model parameters, we randomly selected J of the
expressed genes, and the remaining L of expressed genes and all
the unexpressed genes were used as positive and negative control
sets, respectively. Based upon the parameters W identified from
1002 genes in the training sets, one score was calculated for each
gene by comparing the probability that the RPol II binding
pattern around its TSS fits expressed genes rather than genome-
wide unexpressed regions (Eq. 3 in the Methods); this is evaluated
by the ratio of the likelihood from distributions of expressed genes
and background regions, respectively. The probability of fitting the
genome-wide unexpressed regions was calculated by assuming that
the RPol II binding signals were from intergenic background
regions. Our model using RPol II binding patterns around the
TSS appeared to accurately distinguish between expressed and
unexpressed genes. The area under the curve (AUC) in the
Recursive Operating Characteristics (ROC) reached 0.81 in
differentiating all the expressed genes in the test set and
unexpressed genes (Figure 3A), and the predictive power of this
approach increased with gene expression level (Figure 3A),
reaching 0.93 for genes signal intensity levels .10,000 and
unexpressed genes in the Affymetrix array. The AUC dropped to
0.66 for genes with signal intensities ,1,000.
To assess whether the RPol II sequencing depth is adequate in

identifying active promoter regions, we performed saturation
analysis by analyzing how the prediction power change when only
a subset of sequencing reads are used for prediction. The same
4007 expressed genes and 2134 unexpressed genes in MCF7 cells
were used for saturation analysis. The AUC score was calculated
by randomly selecting 1 million to 6 million reads (Figure 3B).
The predictive power of our approach increased with the
sequence depth and reached a saturation point with more than
4 million reads. Similar results were achieved for other conditions
(Figure S1).

Identification of microRNA promoters
The objective of this study was to identify the TSS and

promoter regions of pri-microRNAs by searching for RPol II
binding patterns similar to those seen in expressed protein-coding
genes in the upstream regions of annotated mature microRNAs
(see methods for details). In brief, for each microRNA, we
searched the TSS of the primary microRNA up to 10,000-bp

upstream of the mature microRNA. Starting from the 59-end of
the annotated mature microRNA [10], we calculated the number
of RPol II-targeted DNA fragments detected in every 200-bp
genomic interval. For each interval within 10,000-bp upstream of
the mature microRNA, the probability that it contains a TSS was
calculated by comparing whether the RPol II binding patterns in
the surrounding bins fit the patterns deduced in the expressed
coding genes (Eq 3), defined as DF. We selected the interval with
the largest DF score as a potential TSS-containing bin. To
evaluate whether the microRNA was actively transcribed, a false

Figure 3. The ROC curve and saturation analysis for TSS
prediction of protein coding genes with different expression
levels. (A) The ROC curve shows the sensitivity and specificity of the
TSS prediction for genes with different expression levels. Genes were
separated into four groups, according to expression level. For each
group and total genes, the TSS was sorted by score DF, and the rate of
false predictions (X-axis) and true predictions (Y-axis) was plotted for
each possible score prediction threshold. The area under the curve
(AUC) for each gene group is shown, computed by extending each plot
to the upper right corner. Gene group is shown by a dotted line. (B) The
saturation analysis demonstrates the effects of sequencing depth to the
prediction. X-axis indicates the number of randomly selected reads from
the whole data set, and Y-axis shows the AUC score for identifying
actively transcribed promoters for the genes with different levels of
expression.
doi:10.1371/journal.pone.0013798.g003
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discovery rate (FDR) was calculated by comparing this score (DF)
to the values derived using RPol II binding patterns around
unexpressed genes. Here, the promoter regions of unexpressed
genes were used as background to estimate the FDR. This
background can also be estimated using randomly selected
genomic regions. A lower FDR indicated a higher possibility that
a particular microRNA was actively transcribed in the respective
biological system.
We focused our study on 419 intergenic microRNAs obtained

from miRBase microRNA sequence database (version 11.0). The
intronic microRNAs, based upon human RefSeq gene annotation
(hg18 genome assembly, [23]), were eliminated from the analysis,
because they might co-transcribe with host genes. Using an FDR
#0.2, we identified promoter regions for 49 and 68 microRNAs
actively transcribed in vehicle- and E2-treated MCF7cells,
respectively (Table S2). In the tamoxifen-resistant cells, 61 and
68 microRNAs were identified in vehicle and E2-treated MCF7-T
cells (Table S2). This list contains 72 microRNAs that were
detected in at least one sample, 47 of which (65%) were present in
all four samples; these 72 microRNAs are from 46 microRNA
clusters [10].
Based on the assumption that RPol II binding enrichment

around the TSS may be due to the interaction with transcription
factors in the regulatory region, for each microRNA, we
considered genomic regions with less than a 90% RPol II signal
decay compared to the ones in TSS-bin as a potential regulatory
region (Figure 4A). For the 46 microRNA clusters detected in at
least one sample, the width of the regulatory regions demonstrated
significant variation (Figure 4B). The median value of the width of
regulatory region was 1381-bp, with longest and shortest widths of
3877-bp and 575-bp, respectively. In addition, we also observed a
wide range of genomic distances between the identified TSS and
their corresponding microRNA (100’s–10000’s bp range;
Figure 4C), with a median distance of 3550-bp. Such findings
are consistent with other studies using sequence features [17] or
other types of genomic data [24].

RPol II binding patterns reveal microRNA predisposition
in tamoxifen-resistant breast cancer cells
In MCF7 cells, 49 microRNAs were actively transcribed (FDR

#0.2), and active transcription of an additional 19 microRNAs
was seen after E2 stimulation (Figure 5). Among the 19 E2-
induced microRNAs in MCF7 cells, 10 were constitutively active
in vehicle-treated MCF7-T cells, and 7 (out of19) were E2-
inducible in MCF7-T (Figure 5). These 7 microRNAs were a
subset of the E2-induced microRNAs in MCF7 cells, demonstrat-
ing that their induction was independent of tamoxifen resistance.
These results suggest that the 10 E2-inducible microRNAs in
MCF7 cells, which became constitutively upregulated in the
MCF7-T cells, may contribute to loss of estrogen sensitivity and
acquisition of the antiestrogen resistant pheonotype. Surprisingly,
E2 treatment did not repress transcriptional activity of any
microRNAs, both in MCF7 and MCF7-T cells. This suggests that
decreased expression of previously reported E2-suppressed micro-
RNAs [25] was more likely to be regulated in the RNA processing
level (microRNA maturation), rather than on the transcriptional
initiation level.
We further classified all 72 microRNAs into the following six

categories:
MicroRNAs identified in all four samples. This category

contains 47 microRNAs that are constitutively transcribed in both
MCF7 and MCF7-T cells (no effect of E2 treatment, Table S2);

E2- inducible, tamoxifen-insensitive. This category
contains 7 microRNAs induced by E2 in both MCF7 and

Figure 4. Features of identified microRNA regulatory regions.
(A) Schematics of the definition of microRNA promoter region. (B)
Histogram illustrating promoter length of the 46 microRNA clusters. (C)
Histogram illustrating the distance between 72 mature microRNAs and
their predicted microRNA TSS.
doi:10.1371/journal.pone.0013798.g004
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MCF7-T cells (hsa-miR-130b, hsa-miR-17, hsa-miR-18a, hsa-
miR-19a, hsa-miR-19b-1, hsa-miR-20a, and hsa-miR-92a-1).

Tamoxifen-inducible, E2-independent. This category
contains 4 microRNAs (hsa-miR-181c, hsa-miR-181d, hsa-miR-
195, and hsa-miR-497) that are transcribed in control and E2-
treated MCF7-T but not expressed MCF7 cells.

Tamoxifen-repressed, E2 independent. Two microRNAs,
hsa-miR-135b and hsa-miR-365-1, were transcribed in both
control and E2-treated MCF7 cells but not in either of the
MCF7-T groups. Transcription of these two microRNAs is thus
suppressed by the tamoxifen treatment and independent of E2
treatment.

Tamoxifen-repressed, E2 inducible. Two microRNAs,
hsa-miR-193b and hsa-miR-301b, were induced by E2 in MCF7
but not in MCF7-T cells.

Predisposed microRNA induction in MCF7-T. Ten
microRNAs, hsa-let-7a-1, hsa-let-7f-1, hsa-miR-148a, hsa-miR-
23a, hsa-miR-24-2, hsa-miR-27a, hsa-miR-550-2, hsa-miR-564,
hsa-miR-663, and hsa-miR-923, were induced by E2 treatment of

MCF7 cells, but showed a similar upregulated level of expression
in both vehicle- and E2-treated MCF7-T, suggesting that the
acquisition of tamoxifen resistance is associated with constitutive
activation of certain microRNAs.

The identified regulatory regions are evolutionarily
conserved
We further examined conservation levels of identified TSS and

promoter regions. For each microRNA, the conservation scores
(PhastCons scores), were retrieved for five genomic regions
(Figure 6A): the 200-bp bin that contained the identified TSS,
predicted regulatory regions (Figure 4A), 2,000-bp upstream of the
regulatory region, 2,000-bp downstream of the regulatory region, and
2,000-bp of randomly selected intergenic regions. The PhastCons
scores are downloaded from UCSC Genome Browser and reflect the
overall conservation among seventeen vertebrate species [23].
Importantly, the average conservation score in the TSS region and
transcript region are markably higher than the upstream regions.

Figure 5. Venn diagram of differentially transcribed microRNAs in breast cancer cells.With FDR#0.2, the identified active transcription of
microRNAs in four statistical comparisons, MCF7 control vs. MCF7 after treatment with 17b-estradiol (E2 treatment), MCF7-T control vs. MCF7-T after
E2 treatment, MCF7 control vs. MCF7-T control, and MCF7 after E2 treatment vs. MCF7-T after E2 treatment. The differentially transcribed microRNAs
in each comparison are showed in the middle of the figure.
doi:10.1371/journal.pone.0013798.g005

MicroRNA Promoter

PLoS ONE | www.plosone.org 6 November 2010 | Volume 5 | Issue 11 | e13798



The identified microRNA promoters are GC-enriched
regions
Approximately 70% of human promoters contain CpG islands

[23]. We observed high GC content within or around the
predicted regulatory regions, and among the 46 microRNA
clusters that contain predicted promoters, 37 (80%) were found to
contain or overlap with at least one CpG island; these clusters
include 59 out of 72 active microRNAs (Table S2). To examine
the distribution of the number of CpG islands at each genomic
locus for all the microRNAs, we aligned the identified TSS bin and
extended 10,000-bp in both upstream and downstream directions
(Figure 6B). We observed clear enrichment of CpG island
occupancy around the predicted TSS and regulatory regions.

Enriched H3K4Me2 signal around the predicted
regulatory regions
As an independent biological validation, we conducted ChIP-

seq experiments on one histone mark, dimethylation of lysine 4 at
histone H3 (H3K4Me2). Genome-wide study suggested that this
mark localizes around gene promoter and enhancer regions, and
forms a bi-peak shape centered at transcription start site [19].
Similar as GC analysis, we aligned the identified TSS bin and
extended 10,000-bp in both upstream and downstream directions,

and counted the number of H3K4Me2 ChIP-seq fragments on
each genomic locus. We observed a bi-peak pattern similar to that
reported in [19,26,27] (Figure 7).

Promoter regions for intronic microRNAs
It has been reported that most intronic microRNAs are co-

transcribed with their host genes, and therefore share common
promoter regions. However, several publications also suggested
that some intronic microRNAs could be transcribed independently
[18,28,29]. To this end, we conducted promoter identification on
the intronic microRNAs using our model. Among the 266 intronic
microRNAs, our algorithm identified 52 microRNA promoters in
at least one of the four conditions (MCF7+/2E2, and MCF7-
T+/2E2). Forty nine of the identified promoter regions overlaps
with the promoters of their host genes. This is consistent with
previous reports. There are, however, three exceptions (hsa-9-1,
hsa-miR-935, and hsa-miR-661); their promoter regions locate
inside of their host gene. The annotations of the identified
promoter and their host genes can be found in Table S3.

Discussion

High throughput DNA sequencing is rapidly changing the
landscape of genomic research [30]. Recent studies using ChIP-
seq technology have revealed genome-wide transcription factor
binding sites [31,32,33], the distribution of histone modifications
across the genome [19], and RPol II binding sites and patterns
associated with active transcription of coding genes [19,33]. In this
study, we used ChIP-seq-derived RPol II binding data to identify
regulatory regions of microRNAs, an important step toward
understanding the cis-acting element and trans-acting factors that
control the microRNA expression levels.
We hypothesized that RPol II binding distribution around the

TSS is similar for microRNAs and protein coding genes. To test
this assumption, we designed a statistical model to characterize
RPol II binding patterns using the signals associated with highly
expressed coding genes. Briefly, the RPol II ChIP-seq data was
used to determine 10 parameters W that describe 5 Gamma
distributions, from which the 5 parameters S, B, T, Kp, and Kt of
every expressed coding genes are selected. These 5 parameters
determine a Poisson parameter (lij) associated with the distribution
of the number of RPol II binding fragments in bin j of gene i.
Rather than being fitted for every expressed gene, these 5
parameters were treated as hidden variables and bounded by five

Figure 6. Sequence conservation and CpG islands distribution
pattern near the predicted microRNAs TSS and in random
intergenic sequences. (A) Sequence conservation around all micro-
RNA TSS in four cell types. (B) CpG islands distribution within 10 kb
upstream and downstream of microRNA transcription start sites.
doi:10.1371/journal.pone.0013798.g006

Figure 7. H3K4Me2 binding patterns near the predicted
microRNA TSS.
doi:10.1371/journal.pone.0013798.g007
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Gamma distributions; this effectively characterized their between
gene variations.
To predict the genomic loci of microRNA transcription start

sites, we applied the model on the RPol II binding patterns in the
upstream region of all annotated microRNAs. We further used this
model to investigate the transcription of microRNAs in response to
hormone treatment of two breast cancer cell lines, estrogen-
dependent breast cancer cells (MCF7) and the anti-estrogen
(tamoxifen) resistant subline (MCF7-T). Our model identified TSS
for 72 microRNAs in at least one of four conditions (treatment of
MCF7 or MCF7-T with either vehicle or 17b-estradiol). Our
results suggest that microRNA predisposition can contribute to the
development of antiestrogen resistance in hormone-dependent
breast cancer cells. It should be noted that while comparing the
predictions between two conditions, we did not take the RPol II
binding intensity into account; only two states, ‘‘active’’ and
‘‘inactive’’ promoters, were considered. This is to avoid the
potential bias caused by the conditional differences between
samples, such as sequencing depth, library preparation errors, and
so on. It is possible that for certain active promoters, RPol II
binding intensity changes but the signal in both conditions are
higher comparing to the background (active in both conditions).
Our model cannot distinguish such differences. In addition, RPol
II enrichment at the promoter region does not guarantee the
expression of downstream gene; many mechanisms can contribute
to such deviation, such as RPol II stalling, RNA binding protein-
induced post-transcriptional regulation, and so on.
Promoter regions and TSS of non-coding RNAs have recently

been identified using strategies based on three types of informa-
tion: 1) sequence composition upstream of the microRNA, such as
GC content, level of conservation, transcription factor binding
sites and expressed sequence tags [15,16,17,24,34]; 2) the
distribution of epigenetic marks that encode regions of transcrip-
tional initiation [20,29], or 3) ChIP-chip-derived RPol II binding
data using custom tiling arrays designed to target ,50kb upstream
the microRNA genes [18]. Our approach differs from those
studies in several ways. First, we did not use sequence composition
as the model base for promoter prediction; instead, that type of
information is used, in part, for model evaluation. We found that
,80% of the identified promoter regions overlap with at least one
CpG island. In addition, the regions we identified tend to be more
evolutionarily conserved. In contrast to sequence information,
RPol II binding patterns provide important temporal and spatial
measurements regarding the initiation of transcription, important
for understanding the mechanism of microRNA transcriptional
regulation. Second, our strategy differs from previous efforts using
H3K4Me3 marks for successfully identifying microRNA promoter
regions [20]. H3K4Me3 highly localizes to promoters [19] and
therefore serves as an excellent transcriptional initiation mark.
Therefore, we applied our model to one of the datasets containing
both H3K4Me3 and RPol II binding data ([19]; from a published
study measuring the binding patterns of 20 histone modification
markers in human CD4+ T-cells). A detailed comparison between
the two strategies revealed several interesting features (Appendix
S1), but perhaps most important was that H3K4Me3 maintains a
permissive chromatin state that allows for transcription factor
binding. However, the permissive chromatin state appears to be
necessary, but not sufficient, for transcriptional initiation, as only
23% H3K4Me3-predicted microRNA promoters are recovered by
our RPol II strategy (Figure S2). This observation, however, can in
part be caused by the differences of experimental conditions, such
as sequencing depth. Third, our approach differs from a recent
study attempting to identify TSS-containing regions in pri-
microRNAs using RPol II ChIP-chip data from a tiling array

platform targeting microRNA upstream regions of up to 50KB.
Instead of only examining the microRNA upstream RPol II
signals, we first trained our model using the RPol II binding
patterns around the TSS of protein coding genes, providing a
statistical framework for evaluating the sensitivity and specificity of
the model prediction (Figure 3). In addition, this framework allows
for self-correcting of variable RPol II binding signals from different
experiments, due to parameter identification for individual
samples, making it possible to compare microRNA promoter
signals under different biological conditions.
Despites these advantages, RPol II binding patterns around the

TSS can only be used to identify regulatory regions of intergenic
microRNAs, which account for approximately half of all
microRNAs. Current evidence is lacking as to whether intronic
microRNAs use their own TSS and promoter sequences or share
the same regulatory components with the host gene. Our results
suggest that most of the intronic microRNAs share promoter
regions with their host genes, with a few exceptions. Similarly, our
TSS search focus on 10kb upstream of microRNA annotation.
Recent studies suggest that some microRNA promoters are far
away from their mature product on the genome; they will not be
predicted by the current strategy. Technically, increasing the
searching scope is possible; however, the prediction accuracy will
be decreased due to the interference with the RPol II signals of
surrounding genes. It should also be noted that the model
presented here only focuses on the transcriptional regulation in the
microRNA biogenesis process; the microRNA expression can also
be affected by other steps, including Drosha-involved nuclear
processing [35,36], nuclear export [35,37], and Dicer-involved
cytomastic processing [35,36,37]. In addition, the computational
model proposed here cannot be used to identify regulatory regions
of the small percentage of microRNAs transcribed by RNA
polymerase III [38].
As shown in Eq. 2, the current model did not incorporate the

potential correlation among 5 parameters that characterize
genome-wide RPol II binding patterns around active promoters.
Neglecting such correlations will potentially affect the likelihood
estimation, and therefore result in less than optimal promoter
prediction. However, ROC curve on our current model suggested
that the AUC has reached ,0.9 in predicting promoter regions of
highly expressed genes (Figure 3). Hence, additional improvement
with better model won’t be significantly beneficial. In order to
model the correlations among S, B, and T, at least two more
random effects need to be introduced into the model to
characterize their shared variations. This additional level of
hierarchical model will lead to one more layer of integration in the
E-step. The numerical integration scheme will be very different,
and computational expense will be much higher. Its complexity
will exceed the current scope of this paper, and it is a challenging
research question.
Our model differs from regular ‘‘peak finder’’ algorithms that

are often used to identify binding sites of transcription factors
derived from ChIP-seq experiments. An underlying assumption of
regular peak finder algorithms is that DNA-binding proteins, such
as transcription factors, contain sequence-specific DNA binding
domains that target a cluster of cis-acting DNA elements sharing
certain sequence features. While such algorithms can identify
DNA binding sites for highly specific transcription factors, they are
not appropriate for identifying binding sites for the general
transcriptional machinery, such as RPol II, which typically does
not display high sequence specificity. In addition, as RPol II
activity likely extends beyond the promoter/transcription start site
of active genes, algorithms for assessing long-range RPol II
binding are needed. Our data demonstrated that RPol II binding
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pattern around the gene transcription start site follows distinct
patterns (Figure 2A), and our model is designed to jointly describe
the number of RPol II binding fragments surrounding the TSS,
including both promoter and transcript regions; this allows for a
more accurate description of RPol II binding pattern features.
Finally, the model framework described here can also be used to
study the activities of other RPol II-related transcriptional events,
such as tissue/condition-specific alternative promoter usage [39],
bi-directional promoters [40], and regulatory regions of other
RPol II-transcribed non-coding RNA in normal and disease states.

Methods

ChIP-seq protocol (for both RPol II and H3K4Me2)
Chromatin immunoprecipitation (ChIP) for PoI II (Santa Cruz,

sc-899X; 10mg) and H3K4me2 (Upstate, 07-030, 10mg) was
performed as previously described [41]. ChIP libraries for
sequencing were prepared following standard protocols from
Illumina (San Diego, CA) as described in [42]. ChIP-Seq libraries
were sequenced using the Illumina Genome Analyzer II (GA II) as
per manufacturer’s instructions. Sequencing was performed up to
36 cycles for mapping to the human genome reference sequence.
Image analysis and base calling were performed with the standard
Illumina pipeline, and with automated matrix and phasing
calculations on the PhiX control that was run in the eighth lane
of each flowcell. Eland_extended algorithm was used to map the
sequences to human genome (hg18). This algorithm is fully
sensitive to 2 mismatches in first 32 bases and allows up to 6
mismatches in whole read length. Only the sequences that
uniquely mapped are reported in export or sorted files.

Modeling promoter features using coding genes
ChIP-seq experiment revealed that RPol II followed distinct

binding patterns around transcription start site of coding genes
(Figure 2). In order to model the genome-wide RPol II binding
pattern around TSS of coding genes in a statistical framework, we
first divided the genomic regions neighboring TSS into 200-bp
bins. The bins were classified into three categories, a TSS bin,
where the annotated TSS locates in the center of the bin,
promoter bins, which locate upstream of the TSS bin, and
transcript bins, which locates downstream of the TSS bin.
Intuitively, the number of RPol II fragments detected in each
bin should follow a Poisson distribution:

Xij*
e{lijl

Xij
ij

Xij !
,lij§0 ð1Þ

where Xij denotes the number of detected fragments in the j-th bin
of the i-th gene, and lij is the expected RPol II quantity for the
same bin. We assumed that the expected RPol II quantity lij is
determined by the expression levels of the i-th gene, and the
relative location of the j-th bin from the transcription start site.

lij~ Biz Si{Bið Þe{Dpj
!
Kpi

h iI Rj in Pro

h i

Si½ "
I Rj in TSS

h i

Tiz Si{Tið Þe{Dtj
!
Kti

h iI R in TRA½ "
ð2Þ

where Si stands for the expected number of RPol II fragments in
the bin that contains the TSS of the i-th gene; while Bi and Ti

denote the expected RPol II fragments in the bins that locate

distantly upstream or downstream of the TSS, which represents
the expected signals for the intergenic background and stead
transcript regions, respectively (Figure 2B). Dj stands for the
distance between the j-th bin and the TSS, represented through
the number of bins away from the TSS bin. Kpi and Kti denote the
decay rate of RPol II signal in the upstream and downstream of
TSS of the i-th gene. The five parameters, Si, Bi, Ti, Kpi, and Kti,
are all gene specific and are assumed to follow respective Gamma
distributions genome-wide. The probability of observing the
experimentally-determined RPol II binding patterns around the
TSS of coding genes can be described as Pr X,YDW½ ", where X
denotes the number of RPol II fragments observed in each bin; Y
is missing data that represent five gene specific parameters, Si, Bi,
Ti, Kpi, and Kti; and W denotes the ten parameters for the Gamma
distributions of the five missing values. The parameter vector W
was estimated from number of RPol II fragments in each bin
around the TSS of the coding genes. See Appendix S1 for details
on numerical calculations.

Identification microRNA regulatory regions
We identified TSS of pri-miRNAs and its regulatory region

using the ten parameters W estimated from RPol II binding
patterns surrounding the TSS of coding genes. For each annotated
intergenic pre-miRNA in miRBase database, we retrieved the
RPol II binding data from 15,000-bp upstream and 5,000-bp
downstream of its start genomic locus, allowing for searching for
TSS within 10K upstream of the annotated pre-miRNA. As
described above, the genomic regions will be divided into a series
of 200-bp bins. For each bin, we evaluated the likelihood of
containing a TSS by calculating a score that describes the
differences between the probability of containing a TSS or not
(background); the background model only incorporates hidden
value (B) since the gene is assumed not to be expressed

DFij~
Pr Xi,YiDWð Þ

Pr Xi,BiDaB,bBð Þ ð3Þ

where W is the estimated parameter vector identified from the
RPol II binding data for the coding genes; Xi represents number
of RPol II binding fragments in the 50 upstream and downstream
bins that surrounding the j-th bin (the bin being evaluated). aB and
bB represents the two parameters that describing the Gamma
distribution of genome-wide background signals. See Appendix S1
for detail procedures.

Data and model availability
All the data are made available in the NCBI Gene Expression

Omnibus (GEO) database with accession number GSE21068 for
the ChIP-seq data for RPol II and H3K4me2, and GSE5840 for
the microarray data for MCF7 and MCF7-T with and without E2
treatment. In addition, both the R-code for the promoter
identification and ChIP-seq data are available in the project
website: http://compbio.iupui.edu/liu/miRpromoter.

Supporting Information

Appendix S1 Supplementary methods and results.
Found at: doi:10.1371/journal.pone.0013798.s001 (0.14 MB
DOC)

Figure S1 The saturation analysis on (A) E2-treated MCF7cells,
(B) vehicle MCF7-T cells, (C) E2-treated MCF7-T cells, and (D)
CD4+ T-cells. Because the gene expression measurements were
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achieved using different microarray platforms, the expression level
for MCF7 and T-cell were sub-classified on different scales.
Found at: doi:10.1371/journal.pone.0013798.s002 (0.20 MB TIF)

Figure S2 Congruity between promoter predictions based upon
RNA polymerase II and H3K4Me3.
Found at: doi:10.1371/journal.pone.0013798.s003 (0.13 MB TIF)

Table S1 The optimal estimations for the 10 parameters in four
conditions.
Found at: doi:10.1371/journal.pone.0013798.s004 (0.02 MB
XLS)

Table S2 The predicted transcription start sites and promoter
regions of 72 microRNAs, and their association with CpG islands.
Found at: doi:10.1371/journal.pone.0013798.s005 (0.04 MB
XLS)

Table S3 Annotations of predicted promoters of intronic
microRNAs.
Found at: doi:10.1371/journal.pone.0013798.s006 (0.05 MB
XLS)
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