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Abstract 

Background: Large amounts of gene expression data from several different platforms are 

being made available to the scientific community and increasingly used as tools for 

validation and integration of other studies.  Several studies have compared two or three 

platforms to evaluate the consistency of expression profiles for a single tissue or sample 

series but few have determined if these translate into reliable gene co-expression patterns 

across many conditions.   

Results: We have analyzed Homo sapiens data from 1202 cDNA microarray 

experiments, 242 SAGE libraries and 667 Affymetrix oligonucleotide microarray 

experiments.  Using standard co-expression analysis methods, we have assessed each 

platform for internal consistency, performed inter-platform comparisons, and tested each 

platform’s predictions against the Gene Ontology.  An overall correlation of correlations 

(rc) analysis showed that the platforms agree significantly better than random (p<0.001, 

1000 randomizations) but with very low correlations of rc < 0.102.  A rank analysis also 

showed significant but poor agreement with only 3-8% better performance than 

randomized data. Comparison against the Gene Ontology (GO) revealed that all three 

platforms identify more co-expressed gene pairs with common biological processes than 

random data and as the Pearson correlation for a gene pair increased it was more likely to 

be confirmed by GO.   

Conclusions:  The three datasets compared demonstrate significant but low levels of 

global concordance. When evaluated for biological relevance, the Affymetrix dataset 

performed best with gene pairs of correlation 0.9-1.0 confirmed by GO in 74% of cases.  

However, our results suggest that all three datasets may provide some biologically 

relevant predictions of co-expression.  Researchers are cautioned against using any one 

dataset exclusively for their analyses. 

 

 

Background 

Large-scale expression profiling has become an important tool for the 

identification of gene functions and regulatory elements.  The development of three such 

techniques, cDNA microarrays [1], oligonucleotide (oligo) microarrays [2] and serial 

analysis of gene expression (SAGE) [3] has resulted in a plethora of studies attempting to 

elucidate cellular processes by identifying groups of genes that appear to be co-expressed.  

Genome wide co-expression analyses in C. elegans have been used with some success to 

identify gene function or genes that are co-regulated [4].  This “guilt-by-association” 

approach has received criticism because of high levels of noise and other problems 

inherent to the methods [5] but still holds great interest for biologists.  Additionally, co-

expression data are increasingly used for validation and integration with other ‘omic’ data 

sources such as sequence conservation [6], yeast two-hybrid interactions [7, 8], RNA 

interference [9] and regulatory element predictions [10] to name only a few.   

 

As increasing amounts of expression data are published and deposited in public 

databases, the issue of data integration becomes more important.  High degrees of 

consistency within a platform have been reported for cDNA microarrays and Affymetrix 

oligonucleotide microarrays [11-13].  The reproducibility of SAGE has not been 

demonstrated as clearly given the time and cost required to produce individual SAGE 



libraries.  However, a recent study showed a high degree of reproducibility and accuracy 

for microSAGE (a modification of SAGE) [14] and preliminary analysis of SAGE 

replicates has demonstrated high levels of correlation, similar to those seen for 

Affymetrix platforms (A. Delaney, pers. comm.).  Cross-platform comparisons of gene 

expression values have found ‘reasonable’ correlations for matched samples, especially 

for more highly expressed transcripts [13, 15-21].  Other studies have reported ‘poor’ 

correlations [20, 22-25].  The correlations reported above were for expression levels or 

expression changes of individual genes, not co-expression of gene pairs.  One study has 

examined the correlation of co-expression results from multiple platforms [26].  The 

authors compared matched Affymetrix oligonucleotide chips and spotted cDNA 

microarrays for the NCI-60 cancer cell panel.  For each platform, the calculation involved 

determining the Pearson correlation (r) between expression profiles (across 60 cell lines) 

for all pairwise gene combinations.  Finally, a correlation of correlations (rc) between the 

two platforms was determined.  When all gene pairs were considered a global 

concordance of rc=0.25 was reported.  As the correlation cutoff was increased, rc 

improved steadily to 0.92 at a correlation cutoff of r=0.91 (but only 28 of 2061 genes 

remained).  If matched samples can display reasonable levels of consistency between 

expression profiles generated by different platforms the question remains as to how 

effectively unmatched samples from many different sources can be combined for co-

expression analyses.  If two genes are co-regulated (i.e. controlled by an identical set of 

transcription factors) they should display similar expression patterns across many 

conditions and be identified as co-expressed.  This is the basic premise of many gene 

function and regulation studies.  If true, large datasets from different expression platforms 

should identify the same co-expressed gene pairs even if derived from different 

conditions and tissues.   

 

To explore this, we have compared three large publicly available datasets for 

SAGE, cDNA microarray (cDNA), and Affymetrix oligonucleotide microarray 

(Affymetrix) (Figure 1).  We calculated all gene-to-gene Pearson correlation coefficients 

and assessed the platforms for internal consistency, cross-platform concordance, and 

agreement with the Gene Ontology.  Pearson was chosen as a similarity metric because it 

is one of the most commonly used, with numerous published examples for Affymetrix 

[11, 27, 28], cDNA [4, 7, 29] and SAGE [30, 31]. Our motivation for this study was to 

explore the fecundity of large extant expression datasets to identify co-regulated genes 

and their utility as a resource for biological study. 

 

 

Results 

Internal Consistency 

Before performing cross-platform comparisons, it is relevant to evaluate each 

platform individually to determine how consistently different experiments from one 

technology identify the same levels of gene co-expression.  To this end, internal 

consistency was determined by dividing each of the datasets in half and comparing the 

gene-to-gene Pearson correlations for each subset.  We first divided the data in a purely 

random fashion.  To make the internal consistency calculation more comparable to the 

cross-platform comparisons, we also devised a pseudo-random division which takes into 



account the presence of experimental replicates and very similar experimental conditions 

in the datasets (see methods).   

 

Internal consistency was found to be dependent on the minimum number of 

common experiments (MCE) between any two genes on which Pearson correlations are 

calculated.  MCE was defined as follows: 

 

MCE – The minimum required number of common or shared experiments for which any 

two genes actually have values available in their respective expression profiles (Figure 

2D). 

 

Increasing the MCE increased the internal consistency but decreased the number of gene 

pairs considered for both the random (Suppl. Figure 1) and pseudo-random (Figure 2) 

division methods.  With the random division, and an MCE of 100, Affymetrix showed the 

highest average internal correlation of 0.925, then cDNA microarray with correlation of 

0.889, and SAGE with correlation of 0.776.  This MCE cutoff was used for the study of 

the cDNA microarray data [6] (E. Segal, pers. comm.).  As expected, the pseudo-random 

division, which groups replicates and experimental datasets, reduced internal 

consistencies with values of 0.253 for Affymetrix, 0.273 for the cDNA microarray and 

0.660 for SAGE with MCE of 100 (Figure 2).  Unfortunately, as the SAGE dataset 

contains only 242 samples, division into two groups of approximately 120 results in 

relatively few gene pairs that meet the criteria of 100 MCE (only 1518 pairs on average). 

 

Internal consistency is a measure of the reproducibility or robustness of gene co-

expression predictions.  This is based on the assumption that if a gene pair is truly co-

expressed based on an expression dataset, it should be predicted as co-expressed by two 

completely different subsets of the data.  The consistency increases with higher MCE but 

at different rates for the three datasets because of their different natures in terms of 

number of experiments and experiment composition.  Thus, it would be unfair to compare 

the datasets with MCEs that resulted in different levels of reproducibility.  In an effort to 

produce an unbiased comparison of the three platforms, the pseudorandom division was 

used to determine an appropriate MCE which would generate the same internal 

consistency (rc=0.25) for each (Affymetrix MCE=95; cDNA MCE=28; SAGE MCE= 23) 

(Figure 2).  All internal consistency correlations are summarized in Table 1. 

 

Cancer samples were found to represent a substantial fraction in the cDNA 

(~29%), Affymetrix (~40% of the complete 889 samples) and SAGE (~61%) datasets.  

Cancer tissues are often characterized by changes in gene expression and thus could act 

as a confounding factor when trying to identify co-expressed genes.  To investigate this 

issue the SAGE dataset was divided into cancer and normal subsets and consistency 

between these measured.  The comparison of normal and cancer SAGE libraries resulted 

in a correlation of 0.324 for an MCE of 23 and 0.707 for an MCE of 80 (MCE of 100 

could not be used because the normal tissue subset only contained 94 samples).  These 

results are comparable to that seen for consistencies of SAGE when not taking cancer 

status into account (Suppl. Fig. 2).  Thus, we cautiously concluded that the presence of 



cancer libraries was not seriously affecting the SAGE co-expression analysis and 

proceeded to subsequent analyses without removing the cancer libraries. 

 

Cross-Platform Correlation Analysis 

Considering that the levels of consistency between subsets of data from a single 

platform were relatively low (when replicates and similar experiments were kept 

together) it is not surprising that the platforms compared poorly against each other 

(Figure 3).  All comparisons were found to have significant but poor positive correlations 

when compared to randomized data (p<0.001, 1000 randomizations).  Affymetrix versus 

cDNA showed the best correlation of 0.102, then Affymetrix versus SAGE with 0.086, 

and finally cDNA versus SAGE with 0.041.   

 

An analysis of correlation at different minimum Pearson cutoffs (r-cutoff) for 

gene pairs was performed as described previously [26] (Suppl. Fig. 3).  Lee et al. (2003) 

observed a steady increase in global concordance (rc=correlation of correlations) up to 

0.92 at an r-cutoff of 0.91.  Our data did not show such an obvious trend.  Global 

concordance stayed close to zero (or even below) for all three pairwise platform 

comparisons up to 0.5-0.6 Pearson cutoff.  The Affymetrix/cDNA correlation did show 

an improvement to rc=0.163 (p=0.003, n=289 gene pairs) at a r-cutoff=0.65.  Similarly 

the Affymetrix/SAGE comparison improved to rc=0.290 (p=0.028, n=44 gene pairs) at an 

r-cutoff=0.7.  After these cutoffs, both Affymetrix/cDNA and Affymetrix/SAGE 

comparisons returned to rc values close to zero (or below) and were reduced to 

insignificant gene pair numbers.  The cDNA/SAGE comparison showed no significant 

increases in rc with any r-cutoff. 

 

Ranked Match Analysis 

The ranked match analysis shows that different expression platforms can identify 

the same co-expressed genes (Figure 4).  It may be that for gene A, SAGE experiments 

identify its most similar gene (in terms of expression patterns) to be gene B with a 

Pearson correlation of 0.9.  The cDNA microarray data might also identify gene B as the 

closest gene to A but with a Pearson value of 0.78.  Thus, a comparison of Pearson ranks 

may be a more useful method for evaluating cross platform consistency than actual 

Pearson values.  The Affymetrix/cDNA comparison found that 26.5% of genes have a co-

expressed gene of Pearson rank 10 or better confirmed by both platforms compared to 

18.9% for random data.  Affymetrix versus SAGE agreed for 26.4% of genes compared 

to 18.9% for random, and cDNA versus SAGE for 21.8% compared to 18.8% for 

random.  The high percentages of genes in agreement for random data are the result of 

our MCE criteria.  Each gene pair must have at least 95, 28 or 23 MCE (for Affymetrix, 

cDNA and SAGE respectively).  Some genes will have close to this number of 

experiments and thus realize the required MCE for only a few gene pair comparisons.  

Since we only consider gene pairs that are common in all three datasets, there will be 

some genes that only have a little more than 10 gene pairs.  In these cases, a shared match 

within a rank of 10 for the two platforms will occur quite commonly by chance.  Thus, it 

is the difference over random, rather than the actual percentage, that indicates a 

significant number of shared matches.  In all three comparisons, the percentage of shared 

matches observed was significantly greater than that observed between randomized 



datasets (p<0.001, 1000 randomizations).  We can conclude that the platform 

comparisons do identify more of the same co-expressed genes than expected by chance.  

However, in general the platforms show poor agreement. 

 

Gene Ontology Analysis 

Since the datasets under study demonstrated little agreement, we attempted to 

determine which dataset was most ‘biologically relevant’.  GO biological process domain 

knowledge [32] was used to evaluate gene co-expression predictions for each platform. 

We hypothesized that genes which are co-expressed will be more likely to be involved in 

the same biological process.  The number of gene pairs annotated to the same ‘most 

specific’ GO (Biological Process) term for each platform was determined (Figure 5).  In 

general, the platforms all perform better than expected by chance.  Affymetrix performed 

best, followed by cDNA microarray and SAGE which performed about equally better 

than random data.  The analysis was extended up the GO hierarchy to ‘most specific + 

parent term’ and ‘most specific + parent + grandparent terms’ (Suppl. Fig. 4).  The exact 

same trends and relationships were observed for the extended GO subspaces.  As the 

parent and grandparent terms are included the random lines get closer to the platform 

lines, because the GO space expands to include increasingly general terms and there is a 

greater likelihood that any two genes will share the same GO term by chance. 

 

A final GO analysis looked at the relationship between the Pearson correlation 

and performance against GO.  For each platform, the number of gene pairs annotated to 

the same ‘most specific term’ at different Pearson correlation ranges was determined 

(Figure 6).  Generally, as Pearson correlation for a gene pair increases it is more likely to 

be confirmed by GO.  With a Pearson value in the range of 0.3-0.4 or better the platforms 

always performed significantly better than randomized data (p<0.001, 1000 

randomizations).  The improvement over random data was very slight for the cDNA and 

SAGE datasets (2-4%).  For the Affymetrix data however, the trend was striking.  Gene 

pairs identified as co-expressed with a Pearson correlation of 0.9-1.0 were confirmed by 

GO in 74% of cases.  Gene pairs from this list include a large set of highly co-expressed 

protein biosynthesis genes as well as a few genes involved in translational elongation (a 

sub-process of protein biosynthesis) and muscle contraction.  It should be noted that, in 

the case of the SAGE and cDNA datasets, only a few gene pairs had Pearson correlations 

> 0.9 (1 for cDNA, 5 for SAGE). 

 

 

Discussion 

It is important to bear in mind that the evaluation presented here may reflect the 

characteristics of the datasets more than the technologies used to generate the data.  

Intrinsic characteristics of the platforms will of course have an effect on the nature and 

quality of the data.  But, to truly evaluate the three platforms for their relative ability to 

identify co-expressed genes we would have to perform the same experiments across 

many different tissues and conditions using each platform.  Given the costs of these 

techniques this evaluation is not currently practical.  Our intention was instead to evaluate 

the largest currently existing, publicly available datasets for these platforms to better 

understand their utility for integration with and validation of other data.   



 

We have shown that the genes identified as co-expressed are highly dependent on 

the dataset used.  We report measures of internal consistency ranging from 0.253 to 0.925 

for Affymetrix oligonucleotide arrays, 0.254 to 0.889 for cDNA microarrays and 0.267 to 

0.776 for SAGE depending on how the data is divided and the minimum number of 

common experiments (MCE) required for each gene-to-gene Pearson correlation 

calculation.  In general, we find that the more data a correlation is based on, the more 

reproducible it is.  When division of samples takes similar or replicate experiments into 

consideration, Affymetrix and cDNA internal consistencies level off at approximately 

0.27 whereas the SAGE dataset continued to improve to above 0.6 as increasing MCE 

between genes was required.  This may reflect the diverse nature of the SAGE dataset for 

which libraries are rarely constructed from the same or similar tissue.  In contrast, it is not 

uncommon for many Affymetrix or cDNA experiments to measure expression of a very 

similar series of samples. 

 

Given that different experimental subsets of the same platform show poor 

correlation it is perhaps not surprising that inter-platform comparisons show very poor 

correlations (r<0.11).  Comparison using Pearson rank instead of actual Pearson value 

confirmed the poor correlations, although the comparisons do agree significantly more 

often than random data.  The fact that none of these data sets agree well raises some 

serious questions.  There are several possible explanations to consider: (1) The data 

comprising these datasets are so noisy as to prevent reliable identification of many truly 

co-expressed genes; (2) Only one of the datasets is accurate and the others inaccurate; (3) 

The method of identifying co-expressed genes is inadequate; (4) The unmatched and non-

overlapping nature of the samples that make up each dataset result in identification of 

different subsets of truly co-expressed genes;  (5) The vast majority of genes are under 

such complex regulatory control that genes co-regulated in one cell-type or tissue behave 

in an entirely different manner in others. 

 

The issue of noise is undoubtedly responsible for at least some of the non-

concordance between datasets.  Technical and biological sources of noise are always 

present to some degree and their effects are difficult to assess when using public data, 

especially for genes expressed at low levels.  A related issue is that the platforms utilize 

intrinsically different methods and are prone to different biases.  For SAGE, tag counts 

are in theory proportional to the actual amount of RNA transcript in the sample [3].  For 

Affymetrix and cDNA, each transcript may be measured with different sensitivity and 

saturation depending on the hybridization characteristics of the sequence in question.  

Cross-hybridization is also an issue for both microarray methods but may affect each 

differently depending on oligonucleotide design and cDNA selection.  Oligonucleotide 

probes or cDNA clones can be annotated to the same gene but represent very different 

sequences.  A recent study compared gene expression ratios and difference calls for 

Agilent cDNA and Affymetrix oligonucleotide microarrays [28].  The authors found that 

cross-platform consistency was significantly better for sequence-matched probes than 

gene-identifier matched probes (the standard method of comparison used in this study).   

SAGE does not have the problem of cross-hybridization but is prone to others such as 

PCR bias and the lack of tag-specificity inherent to the 14mer SAGE protocol [33, 34].  



Thus, even if levels of noise are kept low, intrinsic biases and design differences in each 

method are likely to contribute significantly to non-concordance. 

 

The fact that intra-platform comparisons show some correlation and improve with 

number of data points seems to indicate that at least some gene pairs identified are truly 

co-expressed.  Furthermore, the GO analysis found that gene pairs identified as co-

expressed are more likely to share the same biological process.  Thus, we believe that at 

least a portion of the genes identified as co-expressed are real and can be validated 

biologically.  The GO analysis did not conclusively identify a single ‘correct’ 

platform/dataset but it did show that the Affymetrix dataset identified more biologically 

relevant gene pairs than the cDNA or SAGE datasets.   

 

The question of the best method of analysis is a difficult and contentious one.  

The Pearson correlation coefficient was chosen as a similarity metric simply because it is 

one of the most commonly used methods in the literature [35].  A recent study of SAGE 

mouse retina data found that Poisson-based distances are more appropriate and reliable 

for SAGE data than commonly used metrics such as Pearson or Euclidian [36].  A 

plethora of similar studies for cDNA and oligonucleotide microarray have been published 

outlining the strengths and weaknesses of different metrics, normalization methods, and 

so on, but a consensus has not been reached [37].  For now, the Pearson correlation seems 

a reasonable method of identifying co-expressed genes, as it focuses on patterns of 

changes in expression rather than absolute expression levels.  Alternate methods could be 

attempted and evaluated for biological relevance using the GO analysis.  We did not find 

strong evidence that gene pairs with higher Pearson correlations (r) show greater global 

concordance (rc) between platforms as in the NCI-60 study [26].  However, we did find 

some evidence that gene pairs with higher Pearson values are more likely to be 

biologically relevant (according to GO), especially in the case of the Affymetrix dataset.  

This gives us some confidence in the Pearson correlation as a metric for expression 

analysis.  In any case, our purpose in this study was simply to compare the results of a 

global co-expression analysis from different platforms using standard methods.  A 

comparison of platforms using a wide variety of different similarity metrics would make 

an interesting follow-up study. 

 

Given our results, we believe the final two explanations are most likely, wherein 

each of the platforms is correct to some degree but identifies different sets of co-

expressed genes because most genes are under complex condition- or tissue-specific 

regulatory control.  Many studies using each of these platforms have demonstrated real 

potential to dissect the biological activities of the cell.  But, because each dataset is 

comprised of different experiment series and tissues, each identifies different subsets of 

co-expressed genes.  Indeed, it may be that many genes perform different functions at 

different stages and are under multiple regulatory systems.  Thus, gene A could be co-

expressed with B under some set of conditions in one tissue and co-expressed with gene 

C in another set.  If this is the case, a sub-space analysis, that looks for gene pairs highly 

correlated in subsets of tissues or conditions may be most effective.  Shortly after the 

completion of our analysis, a study along these lines was published [38].  The authors 

examined 60 large microarray datasets (cDNA and Affymetrix oligonucleotide) for gene 



pairs identified as co-expressed in multiple datasets.  Of the 9.7 million different co-

expression pairs that passed their selection criteria, only 2.2% are seen in 3 or more data 

sets.  Knowing this, it is perhaps not surprising that a comparison between pairs of large 

amalgamated datasets reveal poor overall correlations.  The authors find that even gene 

pairs confirmed by only a single dataset have better GO similarity scores than random 

pairs and GO score increases steadily with the number of confirmed links.  Thus, a gene 

pair co-expressed under only a few conditions in the dataset could be biologically 

relevant, but could easily be ‘drowned out’ by the ‘noise’ of samples from conditions in 

which the genes do not act together.  However, many of the links confirmed by only a 

few datasets are also likely false positives.  Genes found to be co-expressed across many 

conditions, as in our global analysis, are more likely to be truly co-regulated. A recent 

study of yeast cDNA microarray experiments found that the ability to correctly identify 

co-regulated genes depends strongly on the number of microarray experiments in the data 

set.  But, even for large numbers of experiments (all available) the true-positive rate was 

only 28% (defined as genes in same cluster sharing at least one known transcription 

factor) [39].  Thus, the resolving power of co-expression studies should continue to 

improve as public datasets grow in size.  

 

Conclusions 

 

The three datasets compared demonstrate significant but low levels of global 

concordance. When evaluated for biological relevance, the Affymetrix dataset performed 

best with gene pairs of correlation 0.9-1.0 confirmed by GO in 74% of cases.  However, 

our results suggest that all three datasets may provide some biologically relevant 

predictions of co-expression.  The selection of co-expressed gene pairs for validation and 

integration of other data sets will likely be dictated by the goals of the study in question 

and the confidence the researcher desires.  In any case, researchers should be cautioned 

against using any one of these data sets as representative of gene co-expression as each 

dataset may be telling different parts of the whole story.  For now, a combination of the 

most reliable results from each method might be the best option.  To this end, we are 

providing a co-expression database from which the most significant gene pairs from each 

dataset (including those published elsewhere) will be made available 

(http://www.bcgsc.ca/gc/bomge/coexpression/).  In general, co-expression identified by 

larger sets of experiments will be most reliable (with more than 100 experiments 

preferable).  SAGE in particular will benefit from the increasing amount of publicly 

available data, as currently its primary weakness is a lack of samples.  The other 

platforms will benefit from a wider range of experimental conditions.  Co-expressed gene 

pairs identified by more than one platform and/or sharing functional annotations may be 

of biological interest.  Further analysis of these genes, using orthology and motif finding 

algorithms, can attempt to identify common transcription factor binding sites that may 

regulate the expression of these co-expression networks. 

 

 

Materials and methods 

Data Sources 



Human gene expression data for three major expression platforms were collected 

from public sources. We used a recently published data set of 1202 cDNA microarray 

experiments [6] representing 13595 genes, 242 SAGE libraries from the Gene Expression 

Omnibus (GEO) (http://www.ncbi.nlm.nih.gov/geo/) representing 15,426 genes, and 667 

Affymetrix HG-U133A oligonucleotide microarray experiments (889 were available but 

222 did not have PMA calls (detection calls)) representing 8,106 genes, also from GEO 

(Figure 1).  cDNA microarray genes provided by Stuart et al. (2003) were identified by 

LocusLink ids [40].  Therefore this identifier was used for the other two platforms to 

allow the gene intersection of the three datasets to be determined and used for the 

subsequent analyses.   

 

Data Filtering 

cDNA microarray data for 13595 genes were used as provided by Stuart et al. 

(2003) except for minor formatting changes (see suppl. Materials for our data).  The 242 

SAGE libraries ranged from 1,430 to 308,589 total tags in size with an average size of 

52,723.  SAGE data was first filtered to remove tags with less than one count in at least 

10 libraries reducing the unique tags from 609,224 to 87,521 (and total tags from 

12,758,981 to 11,219,373).  Next, SAGE tags were mapped to genes by the lowest sense 

tag predicted from Refseq [40] or MGC [41] sequences and then mapped to LocusLink 

ids using the DiscoverySpace software package (developed in house, Zuyderduyn et al., 

unpubl.) reducing the tag set further to 47,263 unique tags.  In the event of discrepancy 

between Refseq and MGC, the former was taken as correct.  If a tag mapped to more than 

one LocusLink or more than one tag mapped to the same LocusLink it was discarded 

resulting in a final set of 15,426 unique tags (2,762,500 total tags) confidently mapped to 

LocusLink ids.   22215 Affymetrix probe ids were mapped to 20577 LocusLink Ids using 

the most current Affymetrix annotation file for the HG-U133A chip 

(www.affymetrix.com, Suppl. Materials).   As with the SAGE tags, probes with 

ambiguous mapping to LocusLink were discarded resulting in a final set of 8106 genes 

from the Affymetrix dataset.  Once LocusLink ids were available for all three platforms, 

the intersection was determined.  This subset of 5881 genes, present in all three 

platforms, was used for all subsequent analyses.  The final 5881 unique SAGE tags 

represent 1,173,430 total tags sequenced. 

 

Distance Calculations 

Ratio values for the cDNA microarray data were used as is for the Pearson 

calculation.  Affymetrix probe intensities were converted to natural log values.  All 

ln(intensity) values were normalized by subtracting the median and dividing by the inter-

quartile range for the experiment [42].  Only Affymetrix probe intensities with a ‘P’ call 

were considered (p-value < 0.04).  Intensities with ‘A’ or ‘M’ calls were set to null.  To 

compensate for different library sizes SAGE tag counts were normalized to 10,000-

tags/library and log-transformed as follows [31]: 

 

Tag frequency = ln((tag count x 10000)/total tags in library).   

 

SAGE tag counts of zero were converted to nulls.  In all platforms, genes are represented 

by a vector of expression values for all the experiments in the data set.  In each case, 



genes have null values if not represented on that array (cDNA), no tags observed 

(SAGE), or intensity not significantly detected (Affymetrix).  Thus, when calculating 

Pearson correlations between gene pairs, the number of shared data points varied from 

zero to the total number of experiments.  A minimum number of common experiments 

(MCE) were required for each gene pair to provide some confidence in the value 

calculated (a Pearson correlation based on observations from only two experiments is 

meaningless).  A range of MCEs was used for the internal consistency analysis (see 

below) and then one minimum chosen for subsequent analyses. 

 

A Pearson correlation coefficient was calculated for all possible gene pairs for 

each platform as a measure of expression similarity.  These calculations were performed 

by a modified version of the C clustering library [43] on 64-bit opteron linux machines 

with 8-32GB memory.  Please see supplementary materials for modified C source code 

and explanation of changes.   

 

Correlation of correlations analysis 

Correlation of correlations (rc) for internal consistencies and platform 

comparisons were performed as previously described [26] using the Pearson correlation 

function (cor) of the R statistical package (version 1.8.1).  This correlation involves 

millions of data points and thus can not be graphed easily.  Therefore, data were binned 

and density plots created using the Bioconductor hexbin (version 1.0.3) add-in function 

for R [44].  

 

Internal consistency analysis 

To evaluate the consistency of co-expression observed within each platform, we 

divided the experiments available and determined co-expression for each subset 

independently.  The results were then compared by calculating a correlation of the gene 

correlations. If a platform consistently finds co-expressed genes regardless of the exact 

experiments involved, the correlation will be close to 1.  To determine whether the 

observed correlation is significant, we repeat the procedure with randomized gene 

expression values, expecting a correlation close to 0.  

 

Pseudo-Random Division Method 

Division was performed first randomly, and then pseudo-randomly.  The pseudo-

random division was necessary to prevent artificially high internal consistencies resulting 

from comparing mostly replicates (or very similar experiments) in the two subsets.  In 

many cases (especially for the Affymetrix data) experimental replicates or very similar 

samples exist in the dataset.  The purpose of co-expression analysis is to identify genes 

that behave similarly across many conditions.  The internal consistency analysis is meant 

to measure how consistently a series of experiments across different conditions would 

identify the same co-expressed genes.  If the two subsets of experiments contain 

replicates, they are more likely to identify the same co-expressed genes as the expression 

values of the replicates will be very similar.  The cross-platform comparisons do not have 

this advantage because they consist of different experiments.  Thus, to make the internal 

consistency calculation more comparable to the cross-platform comparisons, we used a 

pseudo-random division for subsequent analysis.  Experiments were randomly divided 



into two subsets but experiments belonging to the same experimental series (Affymetrix), 

publication (cDNA), or tissue (SAGE) were required to fall into the same subset.   

 

Minimum Common Experiments Analysis 

Differences in the number of common experiments between any two genes result 

from missing values in the data matrices.  In the case of the cDNA microarray data, 

different arrays were used in different experiments, and not all genes are present on all 

the arrays. For SAGE, a tag is often observed in one library but will have a zero tag count 

in other libraries.  For Affymetrix oligonucleotide arrays, an intensity is always reported 

for every probe but in some cases the Affymetrix statistical software will determine that 

the probe was not reliably detected and assign an absent (A) or marginal (M) call instead 

of a present (P) call for that probe.  As missing SAGE tags and probes not called Present 

represent genes expressed below the detection threshold of the SAGE and Affymetrix 

array experiments, we did not include these data in our analysis.  Thus, for each dataset, 

there were gene pairs that were rarely represented in the same experiment and their 

Pearson correlations were based on very data points.  The effect of number of common 

experiments on internal consistency was determined by calculating the internal 

consistency for a series of datasets with different minimum common experiment (MCE) 

criteria.  100 different pseudo-random divisions were performed to get an average 

internal consistency for each MCE.  In an effort to produce an unbiased comparison of 

the three platforms, an MCE was chosen for each such that the same internal consistency 

would result (r=0.25) (Figure 2).  Thus, all subsequent analyses were based on an MCE 

of 95 for Affymetrix, 28 for cDNA, and 23 for SAGE.  Requiring an MCE removes gene 

pairs from the datasets.  To maintain an unbiased comparison, only the 1,173,330 gene 

pairs common to all three platform datasets (after application of MCE criteria) were used 

in the subsequent platform comparisons. 

 

Cancer Sample Analysis 

The proportion of cancer samples was determined from the literature for the 

cDNA dataset [6] and from GEO sample records for Affymetrix and SAGE.  SAGE, 

having the highest percentage of cancer samples, was used for the analysis.  The SAGE 

data set was manually divided into 94 normal and 148 cancer libraries based on sample 

descriptions from the GEO sample records.  The consistency between these two subsets 

of the data was calculated as described above and compared to the other data sets. 

 

Platform Comparisons 

As with the internal consistency analysis, a correlation of gene correlations was 

calculated, but was determined for each of the three pairwise platform comparisons 

instead of between subsets of one platform.  If the two platforms being compared report 

the same correlation between each gene pair, we expect the overall correlation between 

platforms would be near 1.  The global concordance (rc) was determined for increasing 

gene correlation cutoffs to compare to results obtained in the NCI-60 study [26]. 

 

Ranked Match Analysis 

In addition to considering the actual Pearson correlation between each gene pair 

and comparing between platforms, the correlation rank was considered.  This analysis 



identifies shared co-expressed genes, or matches, between platforms.  For instance, a 

shared match would be illustrated by the following:  Gene A’s 2nd most similar gene is 

gene B in the Affymetrix data.  This is gene A’s 3rd most similar gene in the SAGE data.  

This example would count as one shared ‘match’ for a neighborhood of k = 3 for the 

Affymetrix versus SAGE comparison.  A Perl script was written to determine each gene’s 

closest k neighbors from one dataset and compare to another dataset.  Numbers of shared 

neighbors within each neighborhood size (k) were tallied and graphed.  1000 

randomizations were conducted for each platform comparison to determine how often the 

level of agreement at each neighborhood would be observed by chance. 

 

Gene Ontology Analysis 

The Gene Ontology (GO) is a controlled vocabulary that describes the roles of 

genes and proteins in all organisms [32]. GO is composed of three independent 

ontologies: biological process, molecular function, and cellular component. The 

biological process ontology describes the biological objectives to which the gene or gene 

product contributes. The molecular function ontology describes the biochemical activities 

of a gene product. The cellular component ontology describes the locations where the 

genes can be active.  The GO descriptive terms are represented as nodes connected by 

directed edges that may have more than one parent node (directed acyclic graph). A gene 

is annotated to its most specific GO term description and all ancestor GO terms are 

implied.  

 

The Gene Ontology (GO) MySQL database dump (release 200402 of assocdb) 

was downloaded from http://www.godatabase.org/dev/database. A GO MySQL database 

was built and a Perl script was developed to extract three GO information subspaces from 

the biological process ontology: 1) the most specific GO terms for each gene; 2) the most 

specific terms along with their associated parent terms; and 3) the most specific terms 

along with their associated parent and grandparent terms. Two categories of annotations 

were used for the evaluation of each GO information subspace: 1) gene annotations that 

did not include those derived from inferred electronic annotations (IEAs) (1007 genes 

found in common with our data set) and 2) gene annotations including IEAs (1426 genes 

found in common with our data set).  Similar results were obtained for both non-IEA and 

IEA analyses.  For simplicity sake, only the IEA results are reviewed in the figures and 

text. 

 

 One potential issue with our analysis is that of a circular argument.  It is possible 

that a co-expressed gene pair could be found to share a common GO term that was 

annotated for both genes by a co-expression analysis.  Thus, co-expression data could be 

confirming co-expression data.  To check for this problem we assessed the degree to 

which our dataset depends on annotations inferred from expression profiles (IEP evidence 

code).  Only 93 of 32669 biological process annotations use IEP evidence, corresponding 

to only 73 genes with one or more IEP annotations.  Of these, only 1 was present in our 

gene set and this gene also had non-IEP annotations.  Therefore the potential for a 

circular argument is negligible. 

 



Results shown in Figure 5 were extracted from the gene pair correlation data, by 

enumerating the number of gene pairs found at common GO terms across a gene’s 

expression similarity neighborhood for each GO information subspace.  Results shown in 

Figure 6 were extracted by enumerating the number of gene pairs found at common GO 

terms for each range of Pearson correlations from 0 to 1 in increments of 0.1.  1000 

randomizations of the data were conducted to determine how often GO confirmation of a 

gene pair at each neighborhood or Pearson range would occur by chance.  Scripts were 

written in Perl and are available at: http://www.bcgsc.ca/gc/bomge/coexpression/. 

 

List of abbreviations: 

SAGE, Serial Analysis of Gene Expression;  GEO, Gene Expression Omnibus;  GO, 

Gene Ontology;  IEA, Inferred Electronic Annotation;  MGC, Mammalian Gene 

Collection;  NCE, number of common experiments;  r, Pearson correlation;  rc, 

Correlation of correlations. 
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Figure Legends 

Figure 1.  Venn Diagram outlining datasets used in analysis. 

N indicates the number of experiments available for the platform.  For Affymetrix, 

the number in brackets indicates the subset of experiments providing detection 

(PMA) calls. The number of genes represents only those genes that could be 

unambiguously mapped to a LocusLink ID. 

 

Figure 2.  Minimum common experiments analysis using pseudo-random division 

method. 

For each gene pair, the number of common experiments is determined as the 

number of experiments for which expression values are available for both genes. On 

the left axis, MCE is plotted against internal consistency.  On the right axis, MCE is 

plotted against number of gene pairs.  In general, as more MCE are required, less 

gene pairs meet the criteria but the internal consistency improves as the correlation 

is based on more expression data.  Notice that the Affymetrix (A) and cDNA (B) 

datasets appear to level off at approximately rc=0.3 with 100 MCE.  However, the 

SAGE correlation (C) continues to improve up to nearly rc=0.7 before zero genes 

meet the cutoff and a leveling is not observed.  Data represent mean rc value and 

gene pair number of 100 pseudo-random divisions at each MCE.  Error bars 

indicate one standard deviation. 

 

Figure 3.  Platform Comparisons. 

Plots represent correlation of correlations (rc) between each pairwise platform 

comparison.  A. Affymetrix versus cDNA, rc=0.102;  B. Affymetrix versus SAGE, 

rc=0.086;  C. cDNA versus SAGE, rc=0.041.  1,173,330 gene pairs are shown 

representing the intersection between Affymetrix, cDNA, and SAGE for which 95, 

28, and 23 MCE were required respectively for each Pearson correlation 

calculation.  Correlations observed in A-C were significant when compared to 

randomized data (p<0.001, 1000 randomizations).  Small inset boxes show 

representative randomized data; D-E. Pearson correlation (r) frequency 

distributions for each platform.  Notice that each displays a similar, approximately 

normal distribution with a slight skew towards positive correlations. 

 

Figure 4.  Ranked Pearson Analysis.   

Percentage of genes with a co-expressed gene identified by both platforms within a 

rank or neighborhood of k for each platform comparison.  Random lines represent 

mean values from 1000 randomizations.  Error bars indicate one standard 

deviation. 

 

Figure 5. GO Analysis.  

Gene pairs for which both genes were annotated with Gene Ontology Biological 

Process terms were evaluated to determine the percentage of pairs within a 

neighborhood of k that are annotated with the same GO term.  As the GO 

annotation is hierarchical, only the most specific GO terms for each gene were 

considered. Comparison of these percentages to results produced from randomizing 

gene pair correlations indicate that gene pairs found to be correlated by any 



platform are more likely to share the same function than randomly chosen gene 

pairs (p<0.001, 1000 randomizations).  Affymetrix appears to predict the most 

biologically relevant gene pair correlations. 

 

Figure 6. GO Correlation Range Analysis.  

Comparison to data based on randomized correlations shows that a smaller number 

of gene pairs with very low correlations (<0.2) share GO terms.  At higher 

correlations (in particular, r > 0.8) gene pairs are more likely to have similar 

function, although very few gene pairs have high correlations in SAGE and cDNA 

datasets. 75% of gene pairs with correlation > 0.9 calculated from Affymetrix data 

have the same GO annotation.  Random lines represent mean values from 1000 

randomizations.  Error bars indicate one standard deviation. 

 

 

Supplementary Figure Legends 

Suppl. Figure 1. Internal consistency analysis based on random division of 

experiments. 
Analysis is identical to Figure 2, except division of libraries is random rather than 

by experiment, author, or tissue, resulting in much higher rc values due to presence 

of replicates or very similar experiments.  Data represent mean rc value and gene 

pair number of 100 random divisions.  Error bars indicate one standard deviation. 

 

Suppl. Figure 2.  SAGE cancer versus normal analysis. 

Plots represent correlation of correlations for subsets of SAGE data.  (A) 

Correlation between normal and cancer SAGE libraries, rc=0.324 for 23 MCE;  (B) 

Correlation between randomly divided subsets of SAGE data, rc=0.267 for MCE of 

23. 

 

Suppl. Figure 3.  Effect of correlation cutoff on rc. 

Platform comparisons (Figure 3) were repeated with subsets of gene pairs with 

correlations above cutoffs (0.1 increments).  Only positive correlations were 

considered.  Higher global concordance was observed for the Affymetrix/cDNA 

comparison at a Pearson cutoff (r-cutoff) of 0.65 and for the Affymetrix/SAGE 

comparison at r-cutoff of 0.6 and 0.7 (p<0.05).  The cDNA/SAGE comparison did 

not show any increase that was significant.  In any case, the steady trend of 

increasing rc with more stringent r-cutoff was not observed as reported elsewhere 

[26].   Asterisks indicate increased rc values which were also found to be significant 

(p<0.05). 

 

Suppl. Figure 4.  Expanded Go Analysis including hierarchical relationships. 

Analysis performed as for Figure 5, but in addition to considering only most specific 

GO term annotations (A), the percentage of gene pairs sharing parent terms (B) or 

parent and grandparent terms (C) were also determined. As higher levels in the GO 

hierarchical tree (parent and grandparent terms) are considered, there is a higher 

chance that randomly chosen gene pairs will share GO terms, resulting in less 

difference between random and actual data. 



Table 1.  Summary of rc values for internal consistency analysis using different 

sample division methods and MCE cutoffs. 

Note that many different divisions are possible for each result below (except 

cancer/normal).  Gene pair and rc values represent mean values from 100 different 

random or pseudo-random divisions.  

 

Platform Division MCE cutoff Gene pairs rc value 

Random 100 4,149,092 0.925 

95 3,427,174 0.257 

Affymetrix 

By GSE series 

100 3,260,557 0.253 

Random 100 10,429,219 0.889 

28 11,178,346 0.253 

cDNA 

Microarray By author 

100 9,747,169 0.273 

Random 100 2,635 0.776 

23 577,820 0.253 By tissue 

100 1,518 0.660 

10 1,631,419 0.204 

23 448,691 0.324 

SAGE 

Cancer/Normal 

80 1,253 0.707 
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SUPPLEMENTARY MATERIALS 

 

All necessary data will be provided on a supplementary materials webpage hosted by the 

GSC and also through a gene co-expression resource webpage soon to be developed 

(http://www.bcgsc.ca/gc/bomge/coexpression/).  Gene pairs found to be co-expressed 

above a reasonable threshold of confidence are being added to a co-expression database 

(containing data from several species in addition to H. sapiens) as part of the Sockeye 

project.  Sockeye users will ultimately be able to pull up co-expressed genes for any gene 

they are interested in and use these to help identify upstream regulatory elements. 
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