Elucidating the relationship between H3K36 and H3K27 trimethylation across normal and malignant tissue types

Cameron Herberts

GSAT rotation project update: December 5th 2018

Hirst Lab

Histone H3K27 and H3K36 trimethylation in non-malignant cells

- H3K27me3 and H3K36me3 are typically associated with transcriptional repression and activation, respectively, and usually exhibit mutual exclusivity.
- Increasing evidence of crosstalk between H3K36me2/3 and H3K27me3 modifiers:
 - H3K36me3 shown to inhibit PRC2 subunit EZH2, preventing the spreading of H3K27me3.
 - Conversely, PRC2 subunit PHF19 may recruit H3K36me3 demethylase NO66 to H3K36me3 sites.

Fig 1. Conventional distribution of H3K36 and H3K27 trimethylation marks.

Redistribution of H3K27me3 and HeK36me3 in cancer

- Cancer-associated H3 (K36M) mutations co-localize with sites of H3K27 and H3K36 methylation and alter typical binding patterns.
- Disruptions to H3K36 methylation cause depletion of H3K36me3 and expansion of H3K27me3.
 - Impairs differentiation of mesenchymal progenitor cells and is sufficient for sarcoma tumorigenesis.
- Interplay of H3K27me3 and H3K36me3 seems to have an oncogenic role in pediatric cancers.

Fig 2. Genome-wide depletion of H3K36me3 allows for expansion of H3K27me3.

Elucidating the relationship between H3K36 and H3K27 trimethylation across normal and malignant tissue types

<u>Aim</u>: to characterize the relationship between H3K36 and H3K27 trimethylation in cancer and clarify its possible oncogenic role.

- Exploratory analysis across multiple datasets comprising 110 paired samples:
 - 91 from Centre for Epigenome Mapping Technologies (**CEMT**) consortium (normal + tumor samples).
 - 15 from NCI Rhabdoid tumor project (tumor, cell lines, embryonic stem cells).
 - 4 small cell carcinoma of the ovary hypercalcemic type (SCCOHT) tissues.
- Whole-genome H3K36me3 and H3K27me3 ChIP-Seq data available for all samples.

Analysis methodology

- Bam files representing raw hg19 aligned reads from H3K27me3 and H3K36me3 ChIP-Sequencing is converted to fixed-step Wig files.
- Normalized coverage in select regions (TSS +/-2kb) is calculated and returned as a bed file.
- Coverage data for each sample is merged on genomic coordinate to produce a data matrix.
- Amalgamation of meta-data and clarifying missing fields (ongoing)

Fig 3. Schematic of analysis pipeline.

Evidence of H3K36me3 and H3K27me3 mutual exclusivity in normal cells

- Initial focus on the TSS regions of *HOX* gene clusters in non-malignant cell types.
 - HOX genes are often repressed in terminally differentiated cells.
- Normal cells are enriched for H3K27me3 and lack H3K36me3, and generally segregate according to histone marker.
- Confirmation / quality-check of anticipated behaviour in normal cells.

Distribution of H3K36me3 and H3K27me3 in tumour cell-types is less distinct

- Gross enrichment of H3K36me3 coverage in HOX genes compared to normal cells (despite similar clustering behaviour).
- Initial evidence of a shift in distribution between active and repressive histone marks.

Brain_glioma

Colon_malignant

H3K27me3

H3K36me3

0

2

Value

TSS

Distribution of H3K36me3 and H3K27me3 in tumour cell-types is less distinct

- Pairwise correlation among tumour samples shows clear clustering based on histone marker.
- Correlation across samples representing different histone markers is less distinct in brain glioma and germinal centre B-cell (GCB) cancers.
 - H3K27M mutations and subsequent H3K36me3 depletion / H3K27me3 expansion has been observed in pediatric brain gliomas.

Fig 6. Pairwise genome-wide sample coverage correlation heatmap (tumour only).

Concluding remarks + future work

- H3K36me3 and H3K27me3 redistribution may have oncogenic implications in certain cancers.
- This is a preliminary analysis aimed at characterizing H3K36me3 / H3K27me3 histone marker distributions—leveraging a large, heterogenous collection of samples.
- Next steps: identify regions of differential H3K36me3 and H3K27me3 binding across tumor/normal samples.
 - Multiple options further exploration: Peak calling, gene-set enrichment analyses (GSEA), motif enrichment analysis, etc.

Acknowledgements

Dr. Martin Hirst

Alice Zhu	Luolan (Gloria) Li
Alireza Lorzadeh	Marcus Wong
Alvin Qiu	Michelle Moksa
Annaick Carles	Misha Bilenky
Edmund Su	Qi (Rachelle) Cao
Evan Gibbard	Raisa Shabbir
Jasper Wong	Rashedul Islam
Jonathan Steif	
Linda Wang	

CEEHRC NETWORK